Latest Standards, Engineering Specifications, Manuals and Technical Publications

Collection of latest documents from ISO, IEC, CEN, CENELEC, ETSI, and SIST.

This document describes the introduction of radiated immunity testing for the components and vehicles equipped with V2X communications. The link communication connection and V2X scenario simulation are considered to make the V2X functions and their communications operate normally during the immunity testing. Examples of monitoring are also discussed to show the electromagnetic interference reactions of the device with V2X under test. In addition, test hints are described to provide information on radiated immunity for V2X. Technical specifications are not within the scope of this document.

  • Technical report
    47 pages
    English language
    sale 15% off

This document specifies the characteristics of prevailing torque (all metal) hexagon high nuts, in steel and stainless steel, with metric fine pitch thread 8 mm to 39 mm, and with product grades A and B. NOTE These nuts are designed with an overall height hmin = mmin (as specified in ISO 898-2 and ISO 8674 for style 2) plus the prevailing torque feature. hmax has been established in function of hmin; therefore, the tolerance (hmax – hmin) does not follow the ISO code system for tolerances (IT system). The wrenching height mw,min corresponds to the values specified for style 1. If in certain cases other specifications are requested, property classes and stainless steel grades can be selected from ISO 898-2 or ISO 3506-2.

  • Standard
    6 pages
    English language
    sale 15% off
  • Standard
    6 pages
    French language
    sale 15% off

This document covers the type testing of valve stem seals using a test fixture that is designed and fully defined to be representative of the performance of a valve using similar geometry. This document is applicable to stem seals for multi-turn, linear and quarter turn valves. It is intended to provide comparative type test results confirming the performance of seal manufacturers’ stem seal designs. This document is not intended to replace type testing of complete valve assemblies or valve production testing. Compliance with this document is not intended to be a mandatory qualification test to be completed for a stem seal design prior to testing a valve to the requirements of ISO 15848-1. Compressible seals with and without live loading, elastomers and pressure energized seals are in the scope of this document. Corrosion tests are not included in this document.

  • Standard
    24 pages
    English language
    sale 15% off

This document specifies general conditions, defines terms, gives practical guidelines, and establishes the basic principles of the component tests used in the other parts of the ISO 11452 series for determining the immunity of electronic components of passenger cars and commercial vehicles to electrical disturbances from narrowband radiated electromagnetic energy, regardless of the vehicle propulsion system (e.g. spark-ignition engine, diesel engine, electric motor). The electromagnetic disturbances considered are limited to continuous narrowband electromagnetic fields. A wide frequency range (d.c. and 15 Hz to 18 GHz) is allowed for the immunity testing of the components in the ISO 11452 series.

  • Standard
    47 pages
    English language
    sale 15% off

This document gives guidance on the qualification of the performance of a computed tomography (CT) system with respect to various testing tasks. This document is applicable only to industrial imaging (i.e. non-medical applications) and provides a consistent set of definitions of CT performance parameters, including the relationship between these performance parameters and CT system specifications. This document is applicable to industrial computed tomography. This document does not apply to other techniques of tomography such as translational tomography and tomosynthesis.

  • Standard
    10 pages
    English language
    sale 15% off
  • Standard
    11 pages
    French language
    sale 15% off

This document provides test procedures for evaluating coated proppants used in hydraulic fracturing operation. This document provides a consistent methodology for tests performed on coated proppants used in hydraulic fracturing operations.

  • Standard
    28 pages
    English language
    sale 15% off
  • Standard
    30 pages
    French language
    sale 15% off

This document specifies the manual methods used for obtaining samples of liquid or semi-liquid hydrocarbons, tank residues and deposits from fixed tanks, railcars, road vehicles, ships and barges, drums and cans, or from liquids being pumped in pipelines. It applies to the sampling of liquid products, including crude oils, intermediate products, synthetic hydrocarbons and bio fuels, which are stored at or near atmospheric pressure, or transferred by pipelines as liquids at elevated pressures and temperatures. The sampling procedures specified are not intended for the sampling of special petroleum products which are the subject of other International Standards, such as electrical insulating oils (covered in IEC 60475), liquefied petroleum gases (covered in ISO 4257), liquefied natural gases (covered in ISO 8943) and gaseous natural gases (covered in ISO 10715). This document refers to methods of sampling and sampling equipment in use at the time of writing. It does not exclude the use of new equipment, provided that such equipment enables samples to be obtained according to the requirements and procedures of this document.

  • Standard
    66 pages
    English language
    sale 15% off
  • Standard
    73 pages
    French language
    sale 15% off

This document specifies performance requirements for electrofusion control unit (ECU) for use with polyethylene (PE) electrofusion fittings conforming to ISO 4437-3,[ REF Reference_ref_6 \r \h 1 08D0C9EA79F9BACE118C8200AA004BA90B0200000008000000100000005200650066006500720065006E00630065005F007200650066005F0036000000 ]ISO 4427-3[ REF Reference_ref_7 \r \h 2 08D0C9EA79F9BACE118C8200AA004BA90B0200000008000000100000005200650066006500720065006E00630065005F007200650066005F0037000000 ] and ISO 15494.[ REF Reference_ref_8 \r \h 3 08D0C9EA79F9BACE118C8200AA004BA90B0200000008000000100000005200650066006500720065006E00630065005F007200650066005F0038000000 ] NOTE 1 Electrofusion fittings conforming to other documents, e.g. EN 1555-3[ REF Reference_ref_9 \r \h 4 08D0C9EA79F9BACE118C8200AA004BA90B0200000008000000100000005200650066006500720065006E00630065005F007200650066005F0039000000 ] and EN 12201-3,[ REF Reference_ref_10 \r \h 5 08D0C9EA79F9BACE118C8200AA004BA90B0200000008000000110000005200650066006500720065006E00630065005F007200650066005F00310030000000 ] can also be within the scope of this document. The system designed to manage the transfer of data collected during the fusion process is out of the scope of this document. NOTE 2 Data format and retrieval system are specified in ISO 12176-5. NOTE 3 Parameters for the electrofusion cycle are defined in ISO 13950 and ISO 12176-5. Data for traceability purposes are given in ISO 12176-3, ISO 12176-4 and ISO 12176-5. Electrical safety is out of the scope of this document. NOTE 4 The manufacturer of ECU is informed that different safety regulations are in force in different countries or regional area, e.g.: U.S.A., Europe, etc. ECU designed for only one brand of fittings is out of the scope of this document. Excluding any of the requirements specified in this document is not acceptable when an organization claims conformity to this document.

  • Standard
    20 pages
    English language
    sale 15% off

This document specifies a method for measuring the pH value of dispersions and coating materials using pH sensors with ion-sensitive field-effect transistor (ISFET) technology.

  • Standard
    11 pages
    English language
    sale 15% off
  • Standard
    12 pages
    French language
    sale 15% off

This document specifies equipment and procedures for determining the tensile strength and elongation of rectangular and triaxial glass fibre meshes which are used for the reinforcement of the base coat in external thermal insulation composite kits with renders (ETIC kits).

  • Standard
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document provides a common approach and guidance to those undertaking assessment of the major safety hazards as part of the planning, design, and operation of LNG facilities onshore and at shoreline using risk-based methods and standards, to enable a safe design and operation of LNG facilities. The environmental risks associated with an LNG release are not addressed in this document.
This document is applicable both to export and import terminals but can be applicable to other facilities such as satellite and peak shaving plants.
This document is applicable to all facilities inside the perimeter of the terminal and all hazardous materials including LNG and associated products: LPG, pressurized natural gas, odorizers, and other flammable or hazardous products handled within the terminal.
The navigation risks and LNG tanker intrinsic operation risks are recognised, but they are not in the scope of this document. Hazards arising from interfaces between port and facility and ship are addressed and requirements are normally given by port authorities. It is assumed that LNG carriers are designed according to the IGC code, and that LNG fuelled vessels receiving bunker fuel are designed according to IGF code.
Border between port operation and LNG facility is when the ship/shore link (SSL) is established.
This document is not intended to specify acceptable levels of risk; however, examples of tolerable levels of risk are referenced.
See IEC 31010 and ISO 17776 with regard to general risk assessment methods, while this document focuses on the specific needs scenarios and practices within the LNG industry.

  • Technical specification
    66 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the requirements and/or measures to eliminate the hazards or reduce the risks in the following groups of stationary grinding machines which are designed primarily to shape metal by grinding:
—     Group 1: manually controlled grinding machines without power operated axes and without numerical control;
—     Group 2: manually controlled grinding machines with power operated axes and limited numerically controlled capability, if applicable;
—     Group 3: numerically controlled grinding machines.
NOTE 1        For detailed information on the groups of grinding machines, see 3.1 and 3.2.
NOTE 2        Requirements in this document are, in general, applicable to all groups of grinding machines. If requirements are applicable to some special group(s) of grinding machines only, then the special group(s) of grinding machine(s) is/are specified.
This document covers the significant hazards listed in Clause 4 and applies to ancillary devices (e.g. for workpieces, tools, workpiece holding devices and handling devices), which are integral to the machine.
This document also applies to machines which are integrated into an automatic production line or grinding cell in as much as the hazards and risks arising are comparable to those of machines working separately.
This document also includes in Clause 7 a minimum list of safety-relevant information which the manufacturer has to provide to the user. See also ISO 12100:2010, Figure 2, which illustrates the interaction of the manufacturer’s and user’s responsibility for the operational safety.
The user's responsibility to identify specific hazards (e.g. fire and explosion) and reduce the associated risks can be critical (e.g. whether the central extraction system is working correctly).
Where additional metalworking processes (e.g. milling, turning, laser processing) are involved, this document can be taken as a basis for safety requirements. Specific information on hazards arising from other metalworking processes are covered by other International Standards.
This document applies to machines that are manufactured after the date of issue of this document.
This document does not apply to stationary honing, polishing and belt grinding machines. This document does not apply to transportable motor-operated electric tools in accordance with IEC 61029-2-4 and IEC 61029-2-10.

  • Standard
    147 pages
    English language
    sale 10% off
    e-Library read for
    1 day

NOTE         Clause A.2 contains guidance or rationale for this clause.
This document specifies requirements for small-bore connectors intended to be used for connections in neural applications.
This document does not specify requirements for the medical devices or accessories that use these connectors. Such requirements are given in particular standards for specific medical devices or accessories.

  • Standard
    40 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the data structure and content of an interface that permits communication between position-providing device(s) and position-using device(s) enabling the position-using device(s) to obtain and unambiguously interpret position information and determine, based on a measure of the degree of reliability, whether the resulting position information meets the requirements of the intended use.
A standardized interface for positioning allows the integration of reliable position information obtained from non-specific positioning technologies and is useful in various location-focused information applications, such as surveying, navigation, intelligent transportation systems (ITS) and location-based services (LBS).

  • Standard
    71 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62282-6-401:2025 covers the requirements for the performance test methods of a micro fuel cell/battery power system, consisting of a fuel cell system with secondary battery for laptop computers.
For this purpose, this document covers electrical performance tests for the fuel cell/battery hybrid system. This document also covers performance test methods which focus on the power and data interchangeability of the micro fuel cell power system and laptop computer and other characteristics for balance of plant (BOP) installed for laptop computer applications with a fuel cell/battery hybrid system. This document applies to gaseous hydrogen-fuelled fuel cell power, liquid hydrogen-fuelled fuel cell power, direct methanol fuel cell power, and battery hybrid power pack systems. The following fuels are considered within the scope of this document:
- gaseous hydrogen;
- liquid hydrogen compounds;
- methanol.

  • Standard
    23 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61800-9-2:2023 specifies energy efficiency indicators of power electronics (complete drive modules (CDM), input or output sub drive modules (SDM), power drive systems (PDS) and motor starters, all used for motor driven equipment.
This document is a group energy efficiency publication according to IEC Guide 119 and specifies the methodology for the determination of losses of the complete drive module (CDM), the sub drive module (SDM), the power drive system (PDS) and the motor system.
It defines IE and IES classes, their limit values and provides test procedures for the classification of the overall losses of the motor system.
Furthermore, this document proposes a methodology for the implementation of the best energy efficiency solution of drive systems. This depends on the architecture of the motor driven system, on the speed/torque profile and on the operating points over time of the driven load equipment. It provides a link for the energy efficiency evaluation and classification of the extended product.
This edition includes the following significant technical changes with respect to the previous edition:
a) Additional IES Classes defined to IES5;
b) Removed reference motor loss data and now point to IEC 60034-30-2;
c) Expanded and modified factors in Clause 6 for CDMs;
d) Annex C is now the Mathematical Model for CDM Losses;
e) Moved the mathematical model for the CDM to Annex C;
f) Added Sub Drive Input Module and Sub Drive Output Modules to Annex B;
g) Annex D is now the Converter Topology (old Annex C);
h) Annex E is now the Interpolation of Motor Losses (Old Annex D);
i) Annex E expanded to include various motor connections and updated interpolation method;
j) New Annex E for determination of Interpolation Coefficients;
k) Annex F is the old Annex E;
l) New Annex J Explanation of Correction Factors for the Reference Losses in Table 8.

  • Standard
    137 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 63522-38:2025 This part of IEC 63522 is used for testing all kinds of electrical relays and for evaluating their ability to perform under expected conditions of transportation, storage and all aspects of operational use. This document defines a standard test method for mechanical interlock.

  • Draft
    7 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 63522-9:2025 This document used for testing all kinds of relays and evaluates their ability to perform under expected conditions of transportation, storage and all aspects of operational use. It defines standard test methods to determine the ability of the relay to withstand certain climatic test conditions, a sequence of such climatic test conditions or climatic storage conditions.

  • Draft
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60730-2-14: 2025 applies to automatic electric actuators • for use in, on, or in association with equipment for household appliance and similar use; NOTE 1 Throughout this document, the word "equipment" means "appliance and equipment" and "control" means "electric actuator". EXAMPLE 1 Electric actuators for appliances within the scope of IEC 60335. • for building automation within the scope of ISO 16484 series and IEC 63044 series (HBES/BACS); EXAMPLE 2 Independently mounted electric actuators for use in smart grid systems and for building automation systems within the scope of ISO 16484-2. for equipment that is used by the public, such as equipment intended to be used in shops, offices, hospitals, farms and commercial and industrial applications; EXAMPLE 3 Electric actuators for commercial catering, heating, and air-conditioning equipment. • that are smart enabled; • that are AC or DC powered electric actuators with a rated voltage not exceeding 690 V AC or 600 V DC; • used in, on, or in association with equipment that use electricity, gas, oil, solid fuel, solar thermal energy, etc., or a combination thereof; • utilized as part of a control system or controls which are mechanically integral with multifunctional controls having non-electrical outputs; • using NTC or PTC thermistors and to discrete thermistors, requirements for which are contained in Annex J; • that are mechanically or electrically operated, responsive to or controlling such characteristics as temperature, pressure, passage of time, humidity, light, electrostatic effects, flow, or liquid level, current, voltage, acceleration, or combinations thereof; as well as manual controls when such are electrically and/or mechanically integral with automatic controls. NOTE 2 Requirements for manually actuated mechanical switches not forming part of an automatic control are contained in IEC 61058-1-1. This document applies to – the inherent safety of automatic electric actuators, and – functional safety of automatic electric actuators and safety related systems, – controls where the performance (for example the effect of EMC phenomena) of the product can impair the overall safety and performance of the controlled system, – the operating values, operating times, and operating sequences where such are associated with equipment safety. This document specifies the requirements for construction, operation and testing of automatic electric actuators used in, on, or in association with an equipment. This document does not • apply to automatic electric actuators intended exclusively for industrial process applications unless explicitly mentioned in the relevant part 2 or the equipment standard. However, this document can be applied to evaluate automatic electric actuators intended specifically for industrial applications in cases where no relevant safety standard exists; • take into account the response value of an automatic action of an electric actuator, if such a response value is dependent upon the method of mounting the electric actuator in the equipment. Where a response value is of significant purpose for the protection of the user, or surroundings, the value defined in the appropriate equipment standard or as determined by the manufacturer will apply; • address the integrity of the output signal to the network devices, such as interoperability with other devices unless it has been evaluated as part of the control syst

  • Draft
    26 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60060-2:2025 is applicable to complete measuring systems and to their components, used for the measurement of high voltages during laboratory and factory tests with direct voltage, alternating voltage and lightning and switching impulse voltages and combined and composite voltages as specified in IEC 60060-1. For measurements during on-site tests, see IEC 60060-3. The limits on uncertainties of measurements stated in this document apply to test levels stated in IEC 60071-1. The principles of this document apply also to higher levels but the uncertainty can be greater. This document: • defines the terms used; • describes methods to estimate the uncertainties of high-voltage measurements; • states the requirements that apply to measuring systems; • describes the methods for approving a measuring system and checking its components; • describes the procedures by which the user demonstrates that a measuring system meets the requirements of this document, including the limits set for the uncertainty of measurement. This fourth edition cancels and replaces the third edition published in 2010. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) The general layout and text has been updated and improved to make the standard easier to use. b) This document has been revised to align it with the fourth edition of IEC 60060-1. c) The treatment of measurement uncertainty estimation has been expanded. d) This document is now applicable to measuring systems used in testing at all standard insulation levels specified in IEC 60071-1. e) The measurement uncertainty requirement for the front time of the standard lighting impulse voltage has been changed from 10 % to 15 %, for testing at all standard insulation levels specified in IEC 60071-1. f) The parameter "time-to-peak" of the switching impulse defined in the third edition of IEC 60060-1:2010 has been replaced by "front time" in the fourth edition of IEC 60060-1. Necessary changes have been made in this document to accommodate this change in IEC 60060-1. g) Clause 10, Measurement of combined voltages and Clause 11, Measurement of composite voltages have been added. h) Clause B.1 has been significantly revised to align more closely with the provisions of Clause 5, including using the same nomenclature.

  • Draft
    84 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 63522-20:2025 This part of IEC 63522 is used for testing along with the appropriate severities and conditions for measurements and tests designed to assess the ability of DUTs to perform under expected conditions of transportation, storage and all aspects of operational use. This document defines a standard test method for mechanical endurance.

  • Draft
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 63522-37:2025 This part of lEC 63522 is used for testing all kinds of electrical relays and for evaluating their ability to perform under expected conditions of transportation, storage and all aspects of operational use. The object of this document is to define a standard test method to measure terminal temperature rise at rated load, included solder terminals, flat quick-connect terminations, screw and screwless type terminals, alternative termination types and sockets.

  • Draft
    10 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60060-1:2025 is applicable to: - dielectric tests with direct voltage; - dielectric tests with alternating voltage; - dielectric tests with impulse voltage; - dielectric tests with combinations of the above. This document is applicable to tests on equipment having its highest voltage for equipment Um above 1,0 kV AC and 1,5 kV DC. This fourth edition cancels and replaces the third edition published in 2010. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: - The general layout and text have been updated and improved to make the standard easier to use, particularly the clauses for combined and composite test voltages. - The positive tolerance of the front time of lightning impulse voltage has been extended for Um > 800 kV to 100 % (= 2,4 µs). - For switching impulse voltage, a front time has been introduced, similar to lightning impulse voltage and with the new front time the standard switching impulse is defined as 170/2 500 µs. - The requirements for precipitations have been adjusted depending on Um. - A new Annex C, "Procedure for manual calculation from graphical waveforms" has been incorporated. - No examples of software have been given in Annex D, "Guidance for implementing software for evaluation of lightning impulse voltage parameters". - The annex relating to the "Background to the introduction of the test voltage factor for evaluation of impulses with overshoot" has been deleted. - A new informative Annex F, "New definition of the front time of switching impulse voltage" has been incorporated. NOTE 1 Alternative test procedures can be required to obtain reproducible and significant results. The choice of a suitable test procedure is considered by the relevant Technical Committee. NOTE 2 For voltages Um above 800 kV it is possible that some specified procedures, tolerances and uncertainties will not be achievable.

  • Draft
    74 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 63522-7:2025 is used for testing electromechanical elementary relays (electromechanical relays, reed relays, reed contacts, reed switches and technology combination of these) and evaluates their ability to perform under expected conditions of transportation, storage and all aspects of operational use. This document defines a standard test method to evaluate the switching function of the device under test (DUT) at specified energization values throughout the defined temperature range.

  • Draft
    28 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 63522-28:2025 This part of IEC 63522 is used for testing all kinds of electrical relays and for evaluating their ability to perform under expected conditions of transportation, storage and all aspects of operational use. This document defines a standard test method for thermoelectric electromotive force (e.m.f.).

  • Draft
    7 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Within the context of training data for Earth Observation (EO) Artificial Intelligence Machine Learning (AI/ML), this document specifies a conceptual model that:
—     establishes a UML model with a target of maximizing the interoperability and usability of EO imagery training data;
—     specifies different AI/ML tasks and labels in EO in terms of supervised learning, including scene level, object level and pixel level tasks;
—     describes the permanent identifier, version, licence, training data size, measurement or imagery used for annotation;
—     specifies a description of quality (e.g. training data errors, training data representativeness, quality measures) and provenance (e.g. agents who perform the labelling, labelling procedure).

  • Draft
    48 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the characteristics of three-pole circuit breakers, temperature compensated with a rated current from 1 A to 25 A, used in aircraft on-board circuits at a temperature between −55 °C and 125 °C for ratings ≤ 15 A and −55 °C and 90 °C for ratings > 15 A and at an altitude of 22 000 m max.
These circuit breakers are operated by a push-pull type single push button (actuator), with delayed action “trip-free” tripping with a polarized signal contact which is open when main contacts are closed, and inversely.
They will continue to function up to the short-circuit current.

  • Draft
    14 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the dimensions, linear resistance, mechanical characteristics, construction and mass of conductors in aluminium or aluminium alloy for electrical cables for aerospace applications.
It applies to stranded conductors with nominal cross-sections of 5 mm2 to 115 mm2 inclusive.

  • Draft
    9 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a method to quantify residues of certain organic solvents (see Annex A) in footwear materials with gas chromatography-mass spectrometry (GC-MS).
This document is applicable to footwear materials where there is a risk for the presence of certain solvent residues (e.g. solvent present in glues, leather finishing and coated textiles, plastics, rubber).

  • Draft
    17 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document:
—    describes and specifies globally unique addresses and identifiers (ITS-S object identifiers) that are both internal and external to ITS stations and are used for ITS station management;
—    describes how ITS-S object identifiers and related technical parameters are used for classification, registration and management of ITS applications and ITS application classes;
—    describes how ITS-S object identifiers are used in the ITS communication protocol stack;
—    introduces an organizational framework for registration and management of ITS-S objects;
—    defines and specifies management procedures at a high functional level;
—    specifies an ASN.1 module for the identifiers, addresses and registry records identified in this document; and
—    specifies an ASN.1 module for a C-ITS data dictionary containing ASN.1 type definitions of general interest.
This document is based on the architecture of an ITS station specified in ISO 21217 as a bounded secured managed domain (BSMD).

  • Draft
    52 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document:
—     defines a reference land administration domain model (LADM) covering basic information-related components of land registration (including elements above and below the surface of the Earth);
—     provides an abstract, conceptual model with three packages and one sub-package related to:
—    parties (people and organizations);
—    basic administrative units, rights, responsibilities and restrictions (RRRs);
—    spatial units (parcels, and the legal space of buildings and utility networks and other geometry) with a sub-package on surveying and spatial representation (geometry and topology);
—     provides terminology for land administration (LA), based on various national and international systems, that is as simple as possible in order to be useful in practice. The terminology allows a shared description of different formal or informal practices and procedures in various jurisdictions;
—     provides a platform for comparison and monitoring that is based on indicators;
—     provides a basis for national and regional profiles; and
—     enables the combination of land administration information from different sources in a coherent manner.
The following is outside the scope of this document:
—     interference with (national) land administration laws with potentially legal implications; and
—     construction of external databases with party data, address data, land cover data, physical utility network data, archive data and taxation data. However, the LADM provides stereotype classes for these data sets to indicate which data set elements the LADM expects from these external sources, if available.
This document provides the concepts and the detailed structure for standardization in the land administration domain.

  • Draft
    157 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a method for determining the extension set of leather. It is intended for use on upholstery leather but is applicable to all flexible leathers.

  • Draft
    7 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the main characteristics and associated test methods for assessing of acrylonitrile-butadiene-styrene (ABS) recyclates intended for use in the production of semi-finished/finished products.
It is intended to support parties involved in the use of ABS recyclates (rABS) to agree on specifications for specific and generic applications.
This document does not cover the characterization of plastic wastes, which is covered by the EN 15347 series, neither traceability topics which are covered by EN 15343.

  • Draft
    10 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies fundamental requirements for uncut finished spectacle lenses. This document is not applicable to protective spectacle lenses.
This document takes precedence over the corresponding requirements of other standards, if differences exist.

  • Draft
    14 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the requirements for the installation and commissioning of water-based heating, water-based cooling, and heating of domestic hot water (DHW) systems in buildings with a maximum operating temperature of 105 °C.
This document is applicable to the commissioning of systems as a whole, in cases of new systems, renovations and replacement of equipment.
This document does not apply to superheated water systems or steam systems and it does not apply to the specific commissioning requirements for individual components (e.g. how to set fuel/air ratio on a burner). Also, it does not apply to the installation or commissioning of attached systems (e.g. air conditioning, domestic hot water distribution, ventilation systems).
This document specifies only technical requirements but it does not specify any commercial or contractual arrangements between parties.

  • Standard
    68 pages
    English language
    sale 10% off
    e-Library read for
    1 day

DEN/ERM-TG28-561

  • Standard
    100 pages
    English language
    sale 15% off
  • Standard
    100 pages
    English language
    sale 15% off
  • Standard
    100 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The present document specifies technical requirements, limits and test methods for Short Range Devices in the non-
specific category operating in the frequency range 25 MHz to 1 000 MHz.
The non specific SRD category is defined by the EU Commission Decision 2019/1345/EU [i.3] as:
"The non-specific short-range device category covers all kinds of radio devices, regardless of the application or the
purpose, which fulfil the technical conditions as specified for a given frequency band. Typical uses include telemetry,
telecommand, alarms, data transmissions in general and other applications".
These radio equipment types are capable of transmitting up to 500 mW effective radiated power and operating indoor or
outdoor.
NOTE: The relationship between the present document and the essential requirements of article 3.2 of
Directive 2014/53/EU [i.2] is given in Annex A

  • Standard
    107 pages
    English language
    sale 15% off
  • Standard
    107 pages
    English language
    sale 15% off
  • Standard
    107 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 63461:2024 applies to laboratory model tests of any type of Pelton hydraulic turbine with unit power greater than 5 MW. It contains the rules governing test conduct and provides measures to be taken if any phase of the tests is disputed.
The main objectives of this document are:
- to define the terms and quantities used;
- to specify methods of testing and of measuring the quantities involved, in order to ascertain the hydraulic performance of the model;
- to specify the methods of computation of results and of comparison with guarantees;
- to determine if the contract guarantees that fall within the scope of this document have been fulfilled;
- and to define the extent, content and structure of the final report.
Full application of the procedures herein described is not generally justified for machines with smaller power. Nevertheless, this document can be used for such machines by agreement between the purchaser and the supplier.

  • Standard
    1 page
    English and French language
    sale 15% off

IEC TR 63515:2025 provides a conceptual framework for power system resilience. It covers the definition, evaluation metrics and methods, improvement strategies and uses cases of power system resilience. This document is applicable to developing resilient power system and implementing resilience improvement strategies.
This document is not exhaustive, and it is possible to consider other aspects, such as different application scenarios, evaluation methods, and improvement measures.

  • Technical report
    39 pages
    English language
    sale 15% off

IEC TR 61850-90-30:2025, which is a Technical Report, describes extensions of the SCL Substation/Process Section allowing the creation of a comprehensive, IED and hardware independent specification of an IEC 61850 based power system.
It addresses how to:
• decompose functions in SCL
• show function classifications in SCL
• relate functions with the SCL Substation and Process Section
• relate functions to Logical Nodes and IEDs/Specification IEDs
• present information flow between functions in a hardware/implementation independent way
• position Functions in relation to "Application Schemes", "Distributed Functions", "Protection Schemes"
• consider the relationship to Basic Application Profiles (BAP) defined in IEC TR 61850-7-6
The document addresses the engineering process as far as it is related to the specification of Functions and their instantiation in IEC 61850 based power system. This includes the impact on the SCL Process Section during system configuration.
The engineering process related to the definition of Applications and their instantiation is addressed in the Basic Application Profile Document (BAP) in IEC TR 61850-7-6.
The System Configuration process is described in IEC 61850-6.
Modifications and extensions of SCL are done in a way to guarantee backwards compatibility.
In addition, this document introduces:
• Some further elements to SCL that improve the content and usefulness of SSD files and facilitate the handling of SCL files for engineering purposes,
• New variants of IED specific files: ISD file and FSD files,
• Evolution of the engineering rights management, to first improve the usage of SED and add a new concept of System Configuration Collaboration (SCC file) which allows collaboration on the same project with different engineers.

  • Technical report
    184 pages
    English language
    sale 15% off

IEC TR 62282-7-3:2025 is a generic assessment of the feasibility of standardizing accelerated test procedures (both proton exchange membrane (PEM) and oxide ion-conducting solid oxide cell (SOC) technologies) for fuel cell stacks that have been engineered for a specific system application. This document comprises a review of literature and projects, a discussion of the main physical phenomena of interest in accelerated testing campaigns (focusing on the cell and stack levels, not looking at the system as a black box), a compendium of measurement techniques that are applicable, and it suggests a macroscopic approach to the formulation of a representative accelerated testing campaign.

  • Technical report
    29 pages
    English language
    sale 15% off

IEC PAS 62443-2-2: 2025 provides guidance on the development, validation, operation, and maintenance of a set of technical, physical, and process security measures called Security Protection Scheme (SPS). The document’s goal is to provide the asset owner implementing an IACS Security Program (SP) with mechanisms and procedures to ensure that the design, implementation and operation of an SPS manage the risks resulting from cyberthreats to each of the IACS included in its operating facility.
The document is based on contents specified in other documents of the IEC 62443 series and explains how these contents can be used to support the development of technical, physical, and process security measures addressing the risks to the IACS during the operation phase.

  • Technical specification
    44 pages
    English language
    sale 15% off

IEC TS 62271-315:2025 is applicable to direct current (DC) transfer switches designed for indoor or outdoor installation and for operation on HVDC transmission systems having direct voltages of 100 kV and above. DC transfer switches normally include metallic return transfer switches (MRTS), earth return transfer switches (ERTS), neutral bus switches (NBS) and neutral bus earthing switches (NBES).

  • Technical specification
    74 pages
    English language
    sale 15% off

IEC 60050-831:2025 gives the terms and definitions used in smart cities and smart city systems, as well as general terms pertaining to specific applications and associated technologies. This terminology is consistent with the terminology developed in the other specialized parts of the IEV. It has the status of a horizontal standard in accordance with IEC Guide 108.

  • Standard
    50 pages
    English and French language
    sale 15% off

IEC 62282-7-2:2025 applies to SOFC cell/stack assembly units, testing systems, instruments and measuring methods, and specifies test methods to test the performance of SOFC cells and stacks. This document is not applicable to small button cells that are designed for SOFC material testing and provide no practical means of fuel utilization measurement. This document is used based on the recommendation of the entity that provides the cell performance specification or for acquiring data on a cell or stack in order to estimate the performance of a system based on it. Users of this document can selectively execute test items suitable for their purposes from those described in this document.

  • Standard
    98 pages
    English and French language
    sale 15% off

IEC 61000-4-2: 2025 relates to the immunity requirements and test methods for electrical and electronic equipment subjected to static electricity discharges from operators directly and from personnel to adjacent objects. It additionally specifies ranges of test levels which relate to different environmental, and installation conditions and establishes test procedures. The objective of this document is to establish a common and reproducible basis for evaluating the performance of electrical and electronic equipment when subjected to electrostatic discharges. In addition, it includes electrostatic discharges which can occur from personnel to objects near the equipment. This document specifies:
- ideal waveform of the discharge current;
- range of test levels;
- test equipment;
- test setup;
- test procedure;
- calibration procedure;
- measurement uncertainty.
This document gives specifications for tests performed in laboratories and guidance to post-installation tests. This document is not intended to specify the tests to be applied to particular apparatus or systems. The main aim is to give a general basic reference to all concerned product committees. The product committees remain responsible for the appropriate choice of the tests and the severity level to be applied to their equipment. This document excludes tests intended to evaluate the ESD sensitivity of devices during handling and packaging. It is not intended for use in characterizing the performance of ESD protection circuit IEC Guide 107.
This document forms Part 4-2 of IEC 61000. It has the status of a basic EMC publication in accordance with IEC Guide 107. This third edition cancels and replaces the second edition published in 2008. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
a) added a calibration requirement for ESD generators with air discharge tip;
b) added a normative annex for test setups for particular kind of equipment (see Annex I);
c) added an informative annex for wearable devices (see Annex J);
d) added an informative annex on how to select test points and give guidance on how to specify the number of pulses for direct contact discharges (see Annex E);
e) moved Clause 9 into a new informative annex (see Annex K);
f) improvement of the current calibration procedure;
g) improvement of the measurement uncertainty considerations with examples of uncertainty budgets;
h) because post-installation tests cannot be performed in a controlled environment, this test method has been moved into a new informative Annex G.

  • Standard
    163 pages
    English and French language
    sale 15% off

ISO/IEC TR 30189-1:2025 describes a framework for the use of IoT technology for management of tangible cultural heritage assets, which includes the associated functional entities and information flows.

  • Technical report
    21 pages
    English language
    sale 15% off

REN/MSG-TFES-15-3

  • Standard
    67 pages
    English language
    sale 15% off
  • Standard
    67 pages
    English language
    sale 15% off
  • Standard
    67 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ABSTRACT
This specification establishes the manufacture, testing, and performance requirements of two types of asphalt-based emulsions for use in a relatively thick film as a protective coating for metal surfaces. Type I are quick-setting emulsified asphalt suitable for continuous exposure to water within a few days after application and drying. Type II, on the other hand, are emulsified asphalt suitable for continuous exposure to the weather, only after application and drying. Upon being sampled appropriately, the materials shall conform to composition requirements as to density, residue by evaporation, nonvolatile matter soluble in trichloroethylene, and ash and water content. They shall also adhere to performance requirements as to uniformity, consistency, stability, wet flow, firm set, heat test, flexibility, resistance to water, and loss of adhesion.
SCOPE
1.1 This specification covers emulsified asphalt suitable for application in a relatively thick film as a protective coating for metal surfaces.  
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.  
1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Technical specification
    2 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 Research O.N. correlates with commercial automotive spark-ignition engine antiknock performance under mild conditions of operation.  
5.2 Research O.N. is used by engine manufacturers, petroleum refiners and marketers, and in commerce as a primary specification measurement related to the matching of fuels and engines.  
5.2.1 Empirical correlations that permit calculation of automotive antiknock performance are based on the general equation:
Values of k1,  k2, and k3 vary with vehicles and vehicle populations and are based on road-O.N. determinations.  
5.2.2 Research O.N., in conjunction with Motor O.N., defines the antiknock index of automotive spark-ignition engine fuels, in accordance with Specification D4814. The antiknock index of a fuel approximates the Road octane ratings for many vehicles, is posted on retail dispensing pumps in the U.S., and is referred to in vehicle manuals.
This is more commonly presented as:
5.2.3 Research O.N. is also used either alone or in conjunction with other factors to define the Road O.N. capabilities of spark-ignition engine fuels for vehicles operating in areas of the world other than the United States.  
5.3 Research O.N. is used for measuring the antiknock performance of spark-ignition engine fuels that contain oxygenates.  
5.4 Research O.N. is important in relation to the specifications for spark-ignition engine fuels used in stationary and other nonautomotive engine applications.
SCOPE
1.1 This laboratory test method covers the quantitative determination of the knock rating of liquid spark-ignition engine fuel in terms of Research O.N., including fuels that contain up to 25 % v/v of ethanol. However, this test method may not be applicable to fuel and fuel components that are primarily oxygenates.2 The sample fuel is tested using a standardized single cylinder, four-stroke cycle, variable compression ratio, carbureted, CFR engine run in accordance with a defined set of operating conditions. The O.N. scale is defined by the volumetric composition of PRF blends. The sample fuel knock intensity is compared to that of one or more PRF blends. The O.N. of the PRF blend that matches the K.I. of the sample fuel establishes the Research O.N.  
1.2 The O.N. scale covers the range from 0 to 120 octane number but this test method has a working range from 40 to 120 Research O.N. Typical commercial fuels produced for spark-ignition engines rate in the 88 to 101 Research O.N. range. Testing of gasoline blend stocks or other process stream materials can produce ratings at various levels throughout the Research O.N. range.  
1.3 The values of operating conditions are stated in SI units and are considered standard. The values in parentheses are the historical inch-pound units. The standardized CFR engine measurements continue to be in inch-pound units only because of the extensive and expensive tooling that has been created for this equipment.  
1.4 For purposes of determining conformance with all specified limits in this standard, an observed value or a calculated value shall be rounded “to the nearest unit” in the last right-hand digit used in expressing the specified limit, in accordance with the rounding method of Practice E29.  
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see Section 8, 14.4.1, 15.5.1, 16.6.1, Annex A1, A2.2.3.1, A2.2.3.3 (6) and (9), A2.3.5, X3.3.7, X4.2.3.1, X4.3.4.1, X4.3.9.3, X4.3.11.4, and X4.5.1.8.  
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Gu...

  • Standard
    48 pages
    English language
    sale 15% off
  • Standard
    48 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 Coefficients of linear thermal expansion are used, for example, for design purposes and to determine if failure by thermal stress may occur when a solid body composed of two different materials is subjected to temperature variations.  
5.2 This test method is comparable to Test Method D3386 for testing electrical insulation materials, but it covers a more general group of solid materials and it defines test conditions more specifically. This test method uses a smaller specimen and substantially different apparatus than Test Methods E228 and D696.  
5.3 This test method may be used in research, specification acceptance, regulatory compliance, and quality assurance.
SCOPE
1.1 This test method determines the technical coefficient of linear thermal expansion of solid materials using thermomechanical analysis techniques.  
1.2 This test method is applicable to solid materials that exhibit sufficient rigidity over the test temperature range such that the sensing probe does not produce indentation of the specimen.  
1.3 The recommended lower limit of coefficient of linear thermal expansion measured with this test method is 5 μm/(m·°C). The test method may be used at lower (or negative) expansion levels with decreased accuracy and precision (see Section 12).  
1.4 This test method is applicable to the temperature range from −120 °C to 900 °C. The temperature range may be extended depending upon the instrumentation and calibration materials used.  
1.5 SI units are the standard. No other units of measurement are included in this standard.  
1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    5 pages
    English language
    sale 15% off
  • Standard
    5 pages
    English language
    sale 15% off

ABSTRACT
This specification covers unreinforced vulcanized rubber sheets made from ethylene propylene diene terpolymer (EPDM) or butyl (IIR), intended for use in preventing water under hydrostatic pressure from entering a structure. The tests and property limits used to characterize these sheets are specific for each classification and are minimum values to make the product fit for its intended purpose. Types used to identify the principal polymer component of the sheet include: type I - ethylene propylene diene terpolymer, and type II - butyl. The sheet shall be formulated from the appropriate polymers and other compounding ingredients. The thickness, tensile strength, elongation, tensile set, tear resistance, brittleness temperature, and linear dimensional change shall be tested to meet the requirements prescribed. The water absorption, factory seam strength, water vapour permeance, hardness durometer, resistance to soil burial, resistance to heat aging, and resistance to puncture shall be tested to meet the requirements prescribed.
SCOPE
1.1 This specification covers unreinforced vulcanized rubber sheets made from ethylene propylene diene terpolymer (EPDM) or butyl (IIR), intended for use in preventing water under hydrostatic pressure from entering a structure.  
1.2 The tests and property limits used to characterize these sheets are specific for each classification and are minimum values to make the product fit for its intended purpose.  
1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Technical specification
    3 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 Motor O.N. correlates with commercial automotive spark-ignition engine antiknock performance under severe conditions of operation.  
5.2 Motor O.N. is used by engine manufacturers, petroleum refiners and marketers, and in commerce as a primary specification measurement related to the matching of fuels and engines.  
5.2.1 Empirical correlations that permit calculation of automotive antiknock performance are based on the general equation:
Values of k1, k2, and k3 vary with vehicles and vehicle populations and are based on road-octane number determinations.  
5.2.2 Motor O.N., in conjunction with Research O.N., defines the antiknock index of automotive spark-ignition engine fuels, in accordance with Specification D4814. The antiknock index of a fuel approximates the road octane ratings for many vehicles, is posted on retail dispensing pumps in the United States, and is referred to in vehicle manuals.
This is more commonly presented as:
5.3 Motor O.N. is used for measuring the antiknock performance of spark-ignition engine fuels that contain oxygenates.  
5.4 Motor O.N. is important in relation to the specifications for spark-ignition engine fuels used in stationary and other nonautomotive engine applications.  
5.5 Motor O.N. is utilized to determine, by correlation equation, the Aviation method O.N. or performance number (lean-mixture aviation rating) of aviation spark-ignition engine fuel.7
SCOPE
1.1 This laboratory test method covers the quantitative determination of the knock rating of liquid spark-ignition engine fuel in terms of Motor octane number, including fuels that contain up to 25 % v/v of ethanol. However, this test method may not be applicable to fuel and fuel components that are primarily oxygenates.2 The sample fuel is tested in a standardized single cylinder, four-stroke cycle, variable compression ratio, carbureted, CFR engine run in accordance with a defined set of operating conditions. The octane number scale is defined by the volumetric composition of primary reference fuel blends. The sample fuel knock intensity is compared to that of one or more primary reference fuel blends. The octane number of the primary reference fuel blend that matches the knock intensity of the sample fuel establishes the Motor octane number.  
1.2 The octane number scale covers the range from 0 to 120 octane number, but this test method has a working range from 40 to 120 octane number. Typical commercial fuels produced for automotive spark-ignition engines rate in the 80 to 90 Motor octane number range. Typical commercial fuels produced for aviation spark-ignition engines rate in the 98 to 102 Motor octane number range. Testing of gasoline blend stocks or other process stream materials can produce ratings at various levels throughout the Motor octane number range.  
1.3 The values of operating conditions are stated in SI units and are considered standard. The values in parentheses are the historical inch-pounds units. The standardized CFR engine measurements continue to be in inch-pound units only because of the extensive and expensive tooling that has been created for this equipment.  
1.4 For purposes of determining conformance with all specified limits in this standard, an observed value or a calculated value shall be rounded “to the nearest unit” in the last right-hand digit used in expressing the specified limit, in accordance with the rounding method of Practice E29.  
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For more specific hazard statements, see Section 8, 14.4.1, 15.5.1, 16.6.1, Annex A1, A2.2.3.1, A2.2.3.3(6) and (9), A2.3.5, X3.3.7, X4.2.3.1, X4.3.4.1, X4.3.9.3, X4.3.12.4, and X4.5.1.8. ...

  • Standard
    59 pages
    English language
    sale 15% off
  • Standard
    59 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
4.1 The force required to separate a metallic coating from its plastic substrate is determined by the interaction of several factors: the generic type and quality of the plastic molding compound, the molding process, the process used to prepare the substrate for electroplating, and the thickness and mechanical properties of the metallic coating. By holding all others constant, the effect on the peel strength by a change in any one of the above listed factors may be noted. Routine use of the test in a production operation can detect changes in any of the above listed factors.  
4.2 The peel test values do not directly correlate to the adhesion of metallic coatings on the actual product.  
4.3 When the peel test is used to monitor the coating process, a large number of plaques should be molded at one time from a same batch of molding compound used in the production moldings to minimize the effects on the measurements of variations in the plastic and the molding process.
SCOPE
1.1 This test method gives two procedures for measuring the force required to peel a metallic coating from a plastic substrate.2 One procedure (Procedure A) utilizes a universal testing machine and yields reproducible measurements that can be used in research and development, in quality control and product acceptance, in the description of material and process characteristics, and in communications. The other procedure (Procedure B) utilizes an indicating force instrument that is less accurate and that is sensitive to operator technique. It is suitable for process control use.  
1.2 The tests are performed on standard molded plaques. This method does not cover the testing of production electroplated parts.  
1.3 The tests do not necessarily measure the adhesion of a metallic coating to a plastic substrate because in properly prepared test specimens, separation usually occurs in the plastic just beneath the coating-substrate interface rather than at the interface. It does, however, reflect the degree that the process is controlled.  
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    4 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 The edgewise compressive strength of short sandwich construction specimens provides a basis for judging the load-carrying capacity of the construction in terms of developed facing stress.  
5.2 This test method provides a standard method of obtaining sandwich edgewise compressive strengths for panel design properties, material specifications, research and development applications, and quality assurance.  
5.3 The reporting section requires items that tend to influence edgewise compressive strength to be reported; these include materials, fabrication method, facesheet lay-up orientation (if composite), core orientation, results of any nondestructive inspections, specimen preparation, test equipment details, specimen dimensions and associated measurement accuracy, environmental conditions, speed of testing, failure mode, and failure location.
SCOPE
1.1 This test method covers the compressive properties of structural sandwich construction in a direction parallel to the sandwich facing plane. Permissible core material forms include those with continuous bonding surfaces (such as balsa wood and foams) as well as those with discontinuous bonding surfaces (such as honeycomb).  
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text the inch-pound units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    8 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 The determination of the creep rate provides information on the behavior of sandwich constructions under constant applied force. Creep is defined as deflection under constant force over a period of time beyond the initial deformation as a result of the application of the force. Deflection data obtained from this test method can be plotted against time, and a creep rate determined. By using standard specimen constructions and constant loading, the test method may also be used to evaluate creep behavior of sandwich panel core-to-facing adhesives.  
5.2 This test method provides a standard method of obtaining flexure creep of sandwich constructions for quality control, acceptance specification testing, and research and development.  
5.3 Factors that influence the sandwich construction creep response and shall therefore be reported include the following: facing material, core material, adhesive material, methods of material fabrication, facing stacking sequence and overall thickness, core geometry (cell size), core density, core thickness, adhesive thickness, specimen geometry, specimen preparation, specimen conditioning, environment of testing, specimen alignment, loading procedure, speed of testing, facing void content, adhesive void content, and facing volume percent reinforcement. Further, facing and core-to-facing strength and creep response may be different between precured/bonded and co-cured facesheets of the same material.
SCOPE
1.1 This test method covers the determination of the creep characteristics and creep rate of flat sandwich constructions loaded in flexure, at any desired temperature. Permissible core material forms include those with continuous bonding surfaces (such as balsa wood and foams) as well as those with discontinuous bonding surfaces (such as honeycomb).  
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text the inch-pound units are shown in brackets. The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    5 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 This test method is useful in characterizing certain petroleum products, as one element in establishing uniformity of shipments and sources of supply.  
5.2 See Guide D117 for applicability to mineral oils used as electrical insulating oils.  
5.3 The Saybolt Furol viscosity is approximately one tenth the Saybolt Universal viscosity, and is recommended for characterization of petroleum products such as fuel oils and other residual materials having Saybolt Universal viscosities greater than 1000 s.  
5.4 Determination of the Saybolt Furol viscosity of bituminous materials at higher temperatures is covered by Test Method E102/E102M.
SCOPE
1.1 This test method covers the empirical procedures for determining the Saybolt Universal or Saybolt Furol viscosities of petroleum products at specified temperatures between 21 and 99 °C [70 and 210 °F]. A special procedure for waxy products is indicated.  
Note 1: Test Methods D445 and D2170/D2170M are preferred for the determination of kinematic viscosity. They require smaller samples and less time, and provide greater accuracy. Kinematic viscosities may be converted to Saybolt viscosities by use of the tables in Practice D2161. It is recommended that viscosity indexes be calculated from kinematic rather than Saybolt viscosities.  
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    7 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 Often the most critical stress to which a sandwich panel core is subjected is shear. The effect of repeated shear stresses on the core material can be very important, particularly in terms of durability under various environmental conditions.  
5.2 This test method provides a standard method of obtaining the sandwich core shear fatigue response. Uses include screening candidate core materials for a specific application, developing a design-specific core shear cyclic stress limit, and core material research and development.
Note 3: This test method may be used as a guide to conduct spectrum loading. This information can be useful in the understanding of fatigue behavior of core under spectrum loading conditions, but is not covered in this standard.  
5.3 Factors that influence core fatigue response and shall therefore be reported include the following: core material, core geometry (density, cell size, orientation, etc.), specimen geometry and associated measurement accuracy, specimen preparation, specimen conditioning, environment of testing, specimen alignment, loading procedure, loading frequency, force (stress) ratio and speed of testing (for residual strength tests).
Note 4: If a sandwich panel is tested using the guidance of this standard, the following may also influence the fatigue response and should be reported: facing material, adhesive material, methods of material fabrication, adhesive thickness and adhesive void content. Further, core-to-facing strength may be different between precured/bonded and co-cured facings in sandwich panels with the same core and facing materials.
SCOPE
1.1 This test method determines the effect of repeated shear forces on core material used in sandwich panels. Permissible core material forms include those with continuous bonding surfaces (such as balsa wood and foams) as well as those with discontinuous bonding surfaces (such as honeycomb).  
1.2 This test method is limited to test specimens subjected to constant amplitude uniaxial loading, where the machine is controlled so that the test specimen is subjected to repetitive constant amplitude force (stress) cycles. Either shear stress or applied force may be used as a constant amplitude fatigue variable.  
1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined. Within the text, the inch-pound units are shown in brackets.  
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    6 pages
    English language
    sale 15% off

DEN/ERM-TGAERO-31-2

  • Standard
    38 pages
    English language
    sale 15% off
  • Standard
    38 pages
    English language
    sale 15% off
  • Standard
    38 pages
    English language
    sale 10% off
    e-Library read for
    1 day