This part of IEC 60079 specifies the construction and testing of intrinsically safe apparatus intended for use in an explosive atmosphere, and for associated apparatus which is intended for connection to intrinsically safe circuits which enter such atmospheres.
This Type of Protection is applicable to electrical equipment in which the electrical circuits themselves are incapable of causing ignition of a surrounding explosive atmosphere. This includes electrical equipment which contains circuits that are intrinsically safe only under certain conditions, for example under battery supply with mains supply removed.
This standard is also applicable to electrical equipment or parts of electrical equipment located outside the explosive atmosphere or protected by another Type of Protection listed in IEC 60079-0, where the intrinsic safety of the electrical circuits in the explosive atmosphere may depend upon the design and construction of such electrical equipment or parts of such electrical equipment. The electrical circuits exposed to the explosive atmosphere are assessed for use in such an atmosphere by applying this standard.
This standard applies to sensors connected to intrinsically safe circuits but does not apply to the protection of catalytic elements for Group IIC or Group IIB + H2.
The requirements for intrinsically safe systems are provided in IEC 60079-25.
This standard supplements and modifies the general requirements of IEC 60079-0, except as indicated in Table 1. Where a requirement of this standard conflicts with a requirement of IEC 60079-0, the requirement of this standard takes precedence.
Unless otherwise stated, the requirements in this standard are applicable to both intrinsically safe apparatus and associated apparatus, and the generic term "apparatus" is used throughout the standard.
As this standard applies only to electrical equipment, the term "equipment" used in the standard always means “electrical equipment”.
This standard applies to apparatus for use under the atmospheric conditions of IEC 60079-0 with additional requirements for for use at lower atmospheric pressures in the range from 60 kPa (0,6 bar), up to 110 kPa (1,1 bar).
[...]

  • Standard
    222 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document describes the basic requirements for the design and application of explosion suppression systems. This document also specifies test methods for evaluating the effectiveness and the scaling up of explosion suppression systems against defined explosions. This document covers:
-   general requirements for explosion suppression system parts;
-   evaluating the effectiveness of an explosion suppression system;
-   evaluating the scale up of an explosion suppression system to larger than tested volumes;
-   development and evaluation of design tools for explosion suppression systems;
-   installation, operation and maintenance instructions for an explosion suppression system.
This document is applicable only to explosion suppression systems intended for the protection of closed, or essentially closed, enclosures in which an explosion could result as a consequence of ignition of an explosible mixture, e.g. dust-air, gas(vapour)-air, dust-gas(vapour)-air and mist-air.
This document is not applicable for explosions of materials listed below, or for mixtures containing some of those materials:
-   unstable materials that are liable to dissociate;
-   explosive materials;
-   pyrotechnic materials;
-   pyrophoric materials.

  • Standard
    46 pages
    English language
    sale 10% off
    e-Library read for
    1 day

No scope available

  • Amendment
    5 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   This document specifies the electrical requirements for the design of automatic electrostatic application systems for liquid coating materials which can be ignited in an atomised state, used within a temperature range from 5 °C to 40 °C.
This document considers automatic electrostatic application systems for processing ignitable liquid coating materials, where the conductivity of the complete system is limited up to 50 nS/cm. Together with additional measures like e.g. potential separation systems, these requirements can also be applied to ignitable liquid coating materials, where the conductivity of the complete system is limited up to 2 000 μS/cm.
Ignition hazards related to the generated explosive atmosphere and the protection of persons against electric shock are considered.
1.2   This document specifies
-   requirements for an interface to machinery according to EN 16985:2018,
-   additional requirements for machinery covered by EN 1953:2025 and EN 12621:2025.
1.3   This document also specifies requirements for a safe operation of electrostatic application systems, including the electrical installation. The requirements consider both the processing of coating materials and the cleaning and purge processes.
1.4   This document applies to three types of spraying systems; see 5.1.1.
Spraying systems are classified as equipment of group II, category 2G (for intended use in zone 1 or zone 2) or category 3G (for intended use in zone 2).
Only electrostatic spraying systems operating with a d.c. sinusoidal ripple of not more than 10 % of the r.m.s. value are considered.
1.5   For electrostatic application systems used in food and pharmaceutical industry, additional requirements may apply.
1.6   This document does not apply to
-   potential separation systems;
-   selection, installation and application of other electrical and non-electrical equipment in areas with explosion hazard, see EN 60079-14:2014 and EN 16985:2018;
-   quality assurance systems for electrostatic spraying equipment (see EN ISO/IEC 80079-34:2020, ZB.11).

  • Standard
    55 pages
    English language
    sale 10% off
    e-Library read for
    1 day

NEXT ACTION: UNDER BT CONSULTATION SOON (finalization EN with revised Annex Z)
HAS CONSULTANT PUB ASSESSMENT BY 2020-09-24 -- non compliant assessment received
20200325: consultant assessment missing and Annex ZZ was not circulated at FV; document blocked until such a time as this can be resolved

  • Amendment
    10 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60079:2024 contains the specific requirements for the design of electrical systems, selection, installation and the required initial inspection of electrical installations of Ex Equipment in, or associated with, explosive atmospheres including requirements for documentation and personnel competency.
These requirements are in addition to the requirements for installations in non-hazardous areas.
This document applies to all electrical Ex Equipment including fixed, transportable, portable and personal, and installations, permanent or temporary.
This document does not apply to:
• electrical installations in mines susceptible to firedamp;
• inherently explosive situations and dust from explosives or pyrophoric substances (for example explosives manufacturing and processing);
• rooms used for medical purposes;
• electrical installations in areas where the hazard is due to flammable mist; and
• installation of non-electrical Ex Equipment (unless being part of an equipment assembly according IEC TS 60079-46).
No account is taken in this document of the toxic hazards that are associated with flammable gases, liquids and dusts in concentrations that are usually very much less than the lower flammable limit. In locations where personnel could be exposed to potentially toxic concentrations of flammable material, appropriate precautions are necessary. Such precautions are outside the scope of this document.
This sixth edition cancels and replaces the fifth edition published in 2013. This edition constitutes a technical revision. Edition 6 is a major restructure and introduces a number of technical changes from the previous edition (2013), see Table 1 of the foreword for detailed information.

  • Standard
    149 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies terms and definitions (vocabulary) to be used in suitable standards dealing with equipment and protective systems intended for use in potentially explosive atmospheres within the scope of Directive 2014/34/EU.
NOTE   Terms and definitions avoid misunderstandings that are important in relation to the essential health and safety requirements of Directive 2014/34/EU.

  • Standard
    38 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   This document specifies the constructional requirements for fans constructed to Group II G (of explosion groups IIA, IIB and hydrogen) categories 1, 2 and 3, and Group II D categories 2 and 3, intended for use in explosive atmospheres.
NOTE 1   Operation conditions for the different categories of fans used in this document are defined in Clause 4.
1.3   This document specifies requirements for design, construction, testing and marking of complete fan units intended for use in potentially explosive atmospheres in air containing gas, vapour, mist and/or dusts. Such atmospheres can exist inside (the conveyed atmosphere (flammable or not)), outside, or inside and outside of the fan.
This document covers mechanical equipment, in particular fans. The “type of protection” as specified in EN ISO 80079 37:2016 is constructional safety.
1.4   This document is applicable to fans working in ambient atmospheres and with normal atmospheric conditions at the inlet, having
—   absolute pressures ranging from 0,8 bar to 1,1 bar,
—   and temperatures ranging from −20 °C to +60 °C,
—   and maximum volume fraction of 21 % oxygen content,
—   and an aerodynamic energy increase of less than 25 kJ/kg.
NOTE 1   25 kJ/kg is equivalent to 30 kPa at inlet density of 1,2 kg/m3.
This document can also be helpful for the design, construction, testing and marking of fans intended for use in atmospheres outside the validity range stated above or in cases where other material pairings need to be used. In this case, the ignition risk assessment, ignition protection provided, additional testing (if necessary), manufacturer's marking, technical documentation and instructions to the user, clearly demonstrate and indicate the equipment's suitability for the conditions the fan can encounter.
NOTE 2   Temperatures below −20 °C can be considered. Material suitability can require specific evaluation for these temperatures. With lower temperature the explosion pressure increases, which leads to increased test pressures (see A.3) and can require specific testing. Although the standard atmospheric conditions in EN ISO 80079 36:2016 give a temperature range for the atmosphere of −20 °C to +60 °C the normal ambient temperature range for the equipment is −20 °C to +40 °C unless otherwise specified and marked.
1.5   This document does not apply to:
—   group I fans (fans for mining);
—   explosion group IIC (other than hydrogen);
—   category 1D fans;
—   cooling fans or impellers on rotating electrical machines;
—   cooling fans or impellers on internal combustion engines, vehicles or electric motors.
NOTE 3   Measures for category 1D fans are given in EN 1127 1:2019.
NOTE 4   Measures for explosion group IIC (other than hydrogen) are given in EN 1127 1:2019.
NOTE 5   Measures for explosion group I are given in EN ISO/IEC 80079 38:2016 and EN 1127 2:2014.

  • Standard
    60 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the requirements for flame arresters that prevent flame transmission when explosive gas-air or vapour-air mixtures are present. It establishes uniform principles for the classification, basic construction and information for use, including the marking of flame arresters, and specifies test methods to verify the safety requirements and determine safe limits of use. This document is applicable to pressures ranging from 80 kPa to 160 kPa and temperatures ranging from -20 °C to +200 °C. This document does not apply to the following: - external safety-related measurement and control equipment that might be required to keep the operational conditions within the established safe limits; - flame arresters used for explosive mixtures of vapours and gases, which tend to self-decompose (for example, acetylene) or which are chemically unstable; - flame arresters used for carbon disulfide, due to its special properties; - flame arresters whose intended use is for mixtures other than gas-air or vapour-air mixtures (for example, higher oxygen-nitrogen ratio, chlorine as oxidant); - flame arrester test procedures for reciprocating internal combustion engines; - fast acting valves, extinguishing systems and other explosion isolating systems; - Flame arresters used in gas detectors (those being covered for example, by IEC 60079‑29‑1 and IEC 62990‑1). This edition cancels and replaces ISO 16852:2016, which has been technically revised. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to ISO 16852:2016: a) adaptation of the relevant IEC TC 31 requirements on standards; b) modification of the upper limit of the temperature range from 150 °C to 200 °C under the condition that T0 shall be not larger than 80 % of the auto ignition temperature of the gas-air-mixture; c) change of the term "explosion group" to "equipment group" due to editorial requirements in IEC/TC 31; d) clarification of the conditions and requirements for flame arresters whose intended operating conditions are outside the atmospheric conditions in 7.3.4 and 7.3.5; e) clarification of the requirements on the information for use in Clause 12 f) concerning the burn time; f) addition of a permission to the construction requirements both in 7.1 and 14.1 to substitute visual inspection by performing a flow test; g) addition of a flow chart for the evaluation of test results as Annex D

  • Standard
    75 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the requirements for equipment and protective systems for firedamp drainage at mines. It also contains requirements for the construction and monitoring of this equipment and protective systems (see EN 1127 2:2014).
This document does not apply to firedamp utilization systems beyond the utilization shut-off device.

  • Standard
    35 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60079-26:2021 specifies requirements for construction, testing and marking for Ex Equipment that contains parts of the equipment with different Equipment Protection Levels (EPLs) and a separation element. This equipment is mounted across a boundary where different EPLs are required, for example between different gas hazardous areas, dust hazardous areas or gas hazardous areas adjacent to dust hazardous areas.
Separation elements are considered for both electrical and non-electrical equipment. If mechanical energy can be transformed into a potential ignition source, additionally an ignition hazard assessment in accordance with ISO 80079-36 is performed and appropriate measures are undertaken.
This document also specifies requirements for the combination of two Types of Protection, each with EPL Gb, to achieve EPL Ga.
This document supplements and modifies the general requirements of IEC 60079-0. Where a requirement of this document conflicts with a requirement of IEC 60079-0, the requirement of this document takes precedence. This fourth edition cancels and replaces the third edition and constitutes a technical revision.
Please see the IEC 60079-26:2020 foreword for a description of the main changes with respect to the previous edition.

  • Standard
    26 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Creating an amendment on European level to mirror the IEC interpretation sheet of IEC 60079-28:2015/ISH1:2019 which is still active at IEC.

  • Amendment
    5 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60079-31:2022 is available as IEC 60079-31:2022 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.

IEC 60079-31:2022 is applicable to equipment protected by enclosure and surface temperature limitation for use in explosive dust atmospheres. It specifies requirements for design, construction and testing of Ex Equipment and Ex Components. This document supplements and modifies the general requirements of IEC 60079-0. Where a requirement of this document conflicts with a requirement of IEC 60079-0, the requirement of this document takes precedence. This document does not apply to dusts of explosives, which do not require atmospheric oxygen for combustion, or to pyrophoric substances. This document does not apply to Ex Equipment or Ex Components intended for use in underground parts of mines as well as those parts of surface installations of such mines endangered by firedamp and/or combustible dust. This document does not take account of any risk due to an emission of flammable or toxic gas from the dust. This third edition cancels and replaces the second edition published in 2013. This edition constitutes a technical revision. Main significant changes from the previous edition are:
1) Document has been restructured from edition 2
2) Fault current rating of interrupting contacts in clauses 4.3.1 and 4.4.1, major change type C1
3) Cells and batteries in clauses 4.3.5.1 and 4.4.5.1, major change type C2
4) Overload or malfunction condition for the determination of temperature class for "tb" converter fed rotating electric machines, major change type C3
5) Additional requirements for entry devices with dust ignition protection by enclosure "t", major change type C4
Information about the background of ‘Major Technical Changes’
C1 – Ex Equipment having Level of Protection "ta" shall be rated for connection to a circuit with a prospective short circuit current of not greater than 1.5 kA. For Ex Equipment having Level of Protection "tb" or "tc" which is intended for mains connection and intended to interrupt fault current above 10kA, the equipment shall have a rated maximum short circuit withstand current, be tested according to 6.1.1.1, and be marked according to Clause 7.
C2 – For Ex Equipment having Level of Protection "ta" which contains a cell or battery, only a sealed cell or battery shall be used. For Ex Equipment having Level of Protection "tb" and "tc" where there are sparking contacts or hot surfaces, and which contains a cell or battery, only a sealed cell or battery shall be used.
C3 – Table 2 now includes malfunction conditions for temperature class determination of Level of Protection "tb" converter-fed electric machines.
C4 – Annex A added for entry devices with Type of Protection "t" including cable transit devices.

  • Standard
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Creating an amendment on European level to mirror the IEC interpretation sheet of IEC 60079-0:2017/ISH1:2019 and IEC 60079-0:2017/ISH2:2019 which are both active at IEC.

  • Amendment
    6 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Creating an amendment on European level to mirror the IEC interpretation sheet of IEC 60079-7:2015/ISH1:2016 which is still active at IEC.

  • Amendment
    4 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Creating an amendment on European level to mirror the IEC interpretation sheet of IEC 60079-1:2014/ISH1:2020 which is still active at IEC.

  • Amendment
    4 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This part of the IEC 60079 series applies to users and covers only those factors directly related to the inspection and maintenance of electrical installations specifically designed for hazardous areas, where the hazard may be caused by explosive gas or explosive dust atmospheres.
It does not include:
- other fundamental installation and inspection requirements for electrical installations;
- the verification of electrical equipment;
- protection or ventilation of rooms;
- gas detection systems;
- the repair and overhaul of explosion protected equipment (see IEC 60079-19).
While this standard does not include inspection of safety devices such as used in ventilated rooms (see 60079-13), this standard does include the requirements for inspection and maintenance of individual items of equipment that will be part of such systems, for example motors or sensors.
This standard supplements the requirements for inspection and testing in non-hazardous areas in IEC 60364-6.
NOTE 1 Standards applied at the date of installation might not have been IEC standards.
This standard is intended to be applied where there can be a risk due to the presence of explosive gas or dust mixtures with air or combustible dust layers under normal atmospheric conditions. It does not apply to:
- underground mining areas,
- dusts of explosives,
- pyrophoric substances.

  • Standard
    49 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document refers to UGLDs (ultrasonic gas leak detectors) that work in a frequency beyond the audible range. This document is applicable to fixed ultrasonic gas leak detection equipment intended to provide an indication, alarm or other output function for the purpose of initiating automatic or manual protective action(s).
This document specifies general requirements for design, testing and performance, and describes test methods that apply to UGLD. The following items are considered in this document:
-   Leak rates to be used to verify the detection range of UGLD,
-   Test gas to be used (nitrogen or compressed air),
-   Nozzle shape and size used at all tests leak rate tests,
-   Gas pressure used at all leak rate tests,
-   Time duration of each leak rate test,
-   Test leak nozzle height from solid ground,
-   Test leak nozzle angling relative to test UGLD,
-   UGLD angle relative to the leak (field of coverage of the UGLD),
-   Wind speed and direction, air temperature and humidity at day of test,
-   Minimum distance to solid structures (walls, etc.) at test site,
-   Installation height relative to the ground,
-   Texture of solid ground between leak and UGLD,
-   Background noise sources, known to interfere with UGLDs,
-   Specification of detection radius in 3 dimensions,
-   Operational requirements such as temperature, vibration, etc.
This document is also applicable when an equipment manufacturer makes any claims regarding any special features of construction or superior performance that exceed the minimum requirements of this document. This document prescribes that all such claims are verified, and that the test procedures are extended or supplemented, where necessary, to verify the claimed performance. The additional tests are agreed between the manufacturer and test laboratory and identified and described in the test report.
This document does not apply to portable gas detectors using ultrasonic measurements nor to gas detectors using non-ultrasonic measurements to detect a gas leak.

  • Standard
    31 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies general requirements for design, testing and performance, and describes the test methods that apply to portable, transportable and fixed equipment for the measurement of the oxygen concentration in gas mixtures indicating up to 25 % (v/v).

  • Amendment
    5 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This part of IEC 62990 specifies general requirements for design, function and performance, and describes the test methods that apply to portable, transportable, and fixed equipment for the detection and concentration measurement of toxic gases and vapours in workplace atmospheres and other industrial and commercial applications. This document is applicable to continuously sensing equipment whose primary purpose is to provide an indication, alarm and/or other output function the purpose of which is to indicate the presence of a toxic gas or vapour in the atmosphere and in some cases to initiate automatic or manual protective action(s). It is applicable to equipment in which the sensor generates an electrical signal when gas is present.
This document applies to two types of equipment:
• Type HM (Health Monitoring) ‘occupational exposure’ equipment: For occupational exposure measurement, the performance requirements are focused on uncertainty of measurement of gas concentrations in the region of Occupational Exposure Limit Values (OELV). The upper limit of measurement will be defined by the manufacturer in accordance with 4.2.1.
• Type SM (Safety Monitoring) ‘general gas detection’ equipment: For general gas detection applications (e.g. safety warning, leak detection), the performance requirements are focused on alarm signalling. The upper limit of measurement will be defined by the manufacturer according to the intended use of the equipment. In general, the requirements for accuracy will be higher for Type HM equipment than for Type SM equipment. The same equipment may meet the requirements of both Type HM and Type SM. For equipment used for sensing the presence of multiple gases this document applies only to the detection of toxic gas or vapour.
This document is not applicable to equipment:
- with samplers and concentrators such as sorbents or paper tape having an irreversible indication;
- used for the measurement of gases and vapours related to the risk of explosion;
- used for the measurement of oxygen; – used only in laboratories for analysis or measurement;
- used only for process measurement purposes;
- used in the domestic environment;
- used in environmental air pollution monitoring;
- used for open-path (line of sight) area gas measurement;
- used for ventilation control in car parks or tunnels.

  • Amendment
    6 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Inerting is a preventive measure to avoid explosions or fire to happen. By feeding inert gas into a system, which is to be protected against an explosion or a fire, the oxygen content is reduced below a certain limit or completely replaced by an inert gas, depending on the inert gas, on the fuel and the process until no explosion or fire can occur or develop.
Inerting can be used to prevent fire and explosion by reducing the O2 content.
NOTE Inerting can also be used to prevent and to extinguish smouldering nests and glowing fires which are a primary source of ignition in pulverized fuel storage and handling facilities, substituting air by sufficient inert gas inside the equipment.
The following cases are not covered by the guideline:
- admixture of an inert solid powder to a combustible dust;
- inerting of flammable atmospheres by wire mesh flame traps in open spaces of vessels and tanks;
- firefighting;
- avoiding an explosive atmosphere by exceeding the upper explosion limit of a flammable substance;
- anything related to product quality (oxidation or ingress of humidity) or product losses;
- any explosive atmosphere caused by other oxidizing agents than oxygen.
Other technologies might be used in combination with inerting such as floating screens made of independent collaborative floaters consisting of an array of small floaters non-mechanically linked but overlapping each other in order to form a continuous layer covering the liquid surface.
Product oxidation or evaporation reduction is directly proportional to the surface area covering ratio and quality of the inerting.

  • Technical report
    63 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This part of IEC 62990 specifies general requirements for design, function and performance, and describes the test methods that apply to portable, transportable, and fixed equipment for the detection and concentration measurement of toxic gases and vapours in workplace atmospheres and other industrial and commercial applications. This document is applicable to continuously sensing equipment whose primary purpose is to provide an indication, alarm and/or other output function the purpose of which is to indicate the presence of a toxic gas or vapour in the atmosphere and in some cases to initiate automatic or manual protective action(s). It is applicable to equipment in which the sensor generates an electrical signal when gas is present.
This document applies to two types of equipment:
- Type HM (Health Monitoring) ‘occupational exposure’ equipment: For occupational exposure measurement, the performance requirements are focused on uncertainty of measurement of gas concentrations in the region of Occupational Exposure Limit Values (OELV). The upper limit of measurement will be defined by the manufacturer in accordance with 4.2.1.
- Type SM (Safety Monitoring) ‘general gas detection’ equipment: For general gas detection applications (e.g. safety warning, leak detection), the performance requirements are focused on alarm signalling. The upper limit of measurement will be defined by the manufacturer according to the intended use of the equipment. In general, the requirements for accuracy will be higher for Type HM equipment than for Type SM equipment. The same equipment may meet the requirements of both Type HM and Type SM. For equipment used for sensing the presence of multiple gases this document applies only to the detection of toxic gas or vapour.
This document is not applicable to equipment:
- with samplers and concentrators such as sorbents or paper tape having an irreversible indication;
- used for the measurement of gases and vapours related to the risk of explosion;
- used for the measurement of oxygen; – used only in laboratories for analysis or measurement;
- used only for process measurement purposes;
- used in the domestic environment;
- used in environmental air pollution monitoring;
- used for open-path (line of sight) area gas measurement;
- used for ventilation control in car parks or tunnels.

  • Standard
    64 pages
    English language
    sale 10% off
    e-Library read for
    1 day

NEXT ACTION: TB ACTION BY 2020-01-31 (prep doc for BT meeting - Feb2021)
BT CONSULTATION FAILED (addition of Annex ZZ) ON 2020-11-10
HAS CONSULTANT ASSESSMENT BY 2020-09-24 (PUB assessment) - Compliant assessment on 2020-09-22
2020-04-8 mah: Consultant assessment at FV missing, Annex ZZ did not go to FV.

  • Amendment
    8 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60079-25:2020 contains the specific requirements for design, construction and assessment of intrinsically safe systems, Type of Protection “i”, intended for use, as a whole or in part, in locations in which the use of Group I, II or III Ex Equipment is required.
This document supplements and modifies the general requirements of IEC 60079-0 and the intrinsic safety standard IEC 60079-11. Where a requirement of this standard conflicts with a requirement of IEC 60079-0 or IEC 60079-11, the requirement of this standard takes precedence.
The installation requirements of Group II or Group III systems designed in accordance with this standard are specified in IEC 60079-14.
This third edition cancels and replaces the second edition published in 2010 and constitutes a technical revision.

  • Standard
    64 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document describes the recommendations for the design and use of screw conveyors and product receivers which can in addition be used as a means for explosion isolation to prevent a dust explosion transmission into connected plant items by using the bulk material which is inside.
The recommendations given in this document are procedural measures since the properties of the bulk material affect the efficacy of this measure essentially (e.g. flow and explosion characteristics). Product receivers and screw conveyors cannot be considered as protective systems under the scope of the ATEX Directive.
As far as screw conveyors are concerned, the scope of this document is limited to rigid, tubular, singular screw conveyors which consist of a spiral blade coiled around a shaft held by external bearings (the rotating part of the conveyor is sometimes called “auger”).
NOTE   Additional internal bearings can be necessary if the tubular screw conveyor exceeds a certain length.
This document includes limits of application where a plug of bulk material in a screw conveyor is not possible/sufficient to achieve explosion isolation and also application ranges where a plug of bulk material is not necessary to achieve explosion isolation.
This document does not address the mandatory risk analysis and ignition hazard assessment, which are performed for the application of the screw conveyors and product receivers. The mandatory risk assessment includes start-up and shut-down conditions, when potentially no plug of material is present to prevent explosion propagation. To mitigate this residual risk, it is possible to use as an extra measure, e.g. a traditional gate valve which prevents flame transmission and is able to withstand the expected maximum explosion pressure.

  • Technical report
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day

EN 60079-29-1 specifies general requirements for construction, testing and performance, and describes the test methods that apply to portable, transportable and fixed equipment for the detection and measurement of flammable gas or vapour concentrations with air. The equipment, or parts thereof, is intended for use in explosive atmospheres and in mines susceptible to firedamp.
EN 60079-29-1 is applicable to flammable gas detection equipment with a measuring range up to any volume fraction as declared by the manufacturer, and which is intended to provide an indication, alarm or other output function; the purpose of which is to indicate a potential explosion hazard and in some cases, to initiate automatic or manual protective action(s).

  • Amendment
    5 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a test method to determine the explosion limits of gases, vapours and their mixtures, mixed with a gaseous oxidizer or an oxidizer/inert gas mixture at pressures from 0,10 MPa to 10 MPa and for temperatures up to 400 °C.

  • Standard
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies requirements for design, construction, testing and marking of hand-held, portable and transportable vacuum cleaners, including their accessories, constructed to Group II, categories 2G or 3G (of explosion groups IIA, IIB, IIB plus hydrogen), and to Group II, categories 2D or 3D (of explosion groups IIIA, IIIB and IIIC), intended for the collection of combustible or non-combustible dusts and flammable or non-flammable liquids in potentially explosive atmospheres. A potentially explosive atmosphere could be generated by the equipment during its intended use.
NOTE 1   The accumulation of 1 mm or more of combustible dust on surfaces in a working area can create an explosive atmosphere (see reference to 1/32 in. of Depth of Dust Accumulation for Guidance for Area Electrical Classification in NFPA 654, 2017 Edition).
This document applies to equipment driven by electric power and by pneumatic power.
This document gives guidelines for dealing with significant hazards, hazardous situations and/or events relevant to vacuum cleaners when they are used as intended and under conditions of misuse which are reasonably foreseeable by the manufacturer.
Typical applications for the concerned equipment are:
-   collection of dust produced by machinery at the point of generation;
-   general housekeeping around machinery and of working areas; and/or
-   collection of spills;
-   cleaning of equipment during maintenance operations; and/or
-   collection of specific waste.
For the collection of dust in the presence of flammable liquids or vapours, a specific risk assessment is performed if this is part of the vacuum cleaners intended conditions of use and additional precautions beyond what is described in this document can be required.
NOTE 2   The passage of dust through a vacuum cleaner will generate high levels of electrostatic charge which, in most situations, will be a potential source of ignition to a flammable gas or vapour atmosphere.
For the collection of low-conductivity flammable liquids, a specific risk assessment is performed if this is part of the vacuum cleaners intended conditions of use and additional precautions beyond what is described in this document can be required.
NOTE 3   The resulting liquid velocities are likely to be in excess of the limits required to maintain electrostatic charge generation at a non-hazardous level according to CLC/TR 60079 32 1:2018.
This document does not apply to equipment used to collect toxic dusts where there is a health risk if dust passes through the filter elements. This document does not apply to the collection of dusts which have explosive and unstable properties (UN transport class 1, class 4.1 and class 5.2).
NOTE 4   Hazards related to the use of vacuum cleaners for the collection of hazardous dusts are the subject of other standards.
This document applies to vacuum cleaners with an internal dirty air volume of maximum 250 l.
NOTE 5   250 l is the volume above which it is recognized a vacuum cleaner might not be considered as transportable by an operator, and above which additional explosion protections can be required.
The present version of the document does not apply to battery operated equipment.
NOTE 6   Battery operated equipment might be part of the scope of this document in a subsequent version.
This document does not apply to vacuum trucks.
This document applies to vacuum cleaners of canister and back-pack types. This document does not apply to upright vacuum cleaners.
This document does not apply to motorized cleaning head accessories.
NOTE 7   This document does not apply to household appliances which are the subject of other standards.
This document does not apply to applications where the substances are conveyed into a separate receiving container.
This document does not apply to equipment intended for use in underground parts of mines as well as those parts of surface installations of such mines endangered by firedamp and/or combustible dust.
..

  • Standard
    98 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60050-426:2020 gives terms specifically relevant to explosive atmospheres. This new edition reviews and complements the previous one. This terminology is consistent with the terminology developed in the other specialized parts of the IEV.
It has the status of a horizontal standard in accordance with IEC Guide 108.

  • Standard
    443 pages
    English and French language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    430 pages
    English and French language
    sale 15% off

This document specifies a test method that is designed to measure the explosion pressure and the maximum explosion pressure, the rate of explosion pressure rise and the maximum rate of explosion pressure rise of a quiescent flammable gas/air/inert mixture in closed volume at ambient temperature and pressure. In this document, the term “gas” includes vapours but not mists. Detonation and decomposition phenomena are not considered in this document.
The pressures and rates of pressure rise measured by the procedures specified in this document are not applicable to flameproof enclosures, i.e. enclosures intended to withstand an internal explosion and not to transmit it to an external explosive atmosphere, or any other closed volume where the internal geometry can result in pressure piling. Even in an enclosure of relatively simple geometry the disposition of the internal components can lead to rates of pressure rise significantly higher than those measured using this document. This document does not apply to the design and testing of flameproof enclosures in conformity with EN ISO 80079-37 (for non-electrical equipment) and EN 60079-1 (for electrical equipment).

  • Standard
    41 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This part of IEC 60079, which is a technical specification, specifies requirements for the construction, marking, and documenting of apparatus, systems and installations for use with the 2-Wire Intrinsically Safe Ethernet concept (2-WISE). The physical layer specification for 2-wire Ethernet 10BASE-T1L is defined in IEEE 802.3cg
2-WISE is the 2-Wire Intrinsically Safe Ethernet concept for advance physical layer (APL), designed to simplify the examination process for components and cable Entity Parameters within APL segments. This is achieved by defining universal Entity Parameter limits for APL ports, according to location and type of hazardous atmosphere, and listing a concise set of rules for the segment setup.
The requirements for construction and installation of 2-WISE apparatus and systems are included in IEC 60079-11, IEC 60079-14, and IEC 60079-25, except as modified by this technical specification. Parts of a 2-WISE apparatus may be protected by any Type of Protection listed in IEC 60079-0 appropriate to the EPL for the intended use. In these circumstances, the requirements of this technical specification apply only to intrinsically safe circuits of the apparatus.

  • Technical specification
    17 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62990-2:2021 gives guidance on the selection, installation, use and maintenance of electrical equipment used for the measurement of toxic gases and vapours in workplace atmospheres. The primary purpose of such equipment is to ensure safety of personnel and property by providing an indication of the concentration of a toxic gas or vapour and warning of its presence.
This document is applicable to equipment whose purpose is to provide an indication, alarm or other output function to give a warning of the presence of a toxic gas or vapour in the atmosphere and in some cases to initiate automatic or manual protective actions. It is applicable to equipment in which the sensor automatically generates an electrical signal when gas is present.
For the purposes of this document, equipment includes:
a) fixed equipment;
b) transportable equipment, and
c) portable equipment.
This document is intended to cover equipment defined within IEC 62990-1, but can provide useful information for equipment not covered by that document.

  • Standard
    65 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This part of IEC 60079, which is a Technical Specification, provides guidance for equipment for use in explosive atmospheres in environments which may include ambient temperatures below –20 °С, and additional adverse conditions, including maritime applications.
The purpose of this document is to provide recommendations to be considered for the design, manufacture and use of equipment. It is intended that this document be used for equipment operating within the environmental range specified on the certificate for the equipment.

  • Technical specification
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60079-10-1:2020 is concerned with the classification of areas where flammable gas or vapour hazards may arise and may then be used as a basis to support the proper design, construction, operation and maintenance of equipment for use in hazardous areas.
It is intended to be applied where there may be an ignition hazard due to the presence of flammable gas or vapour, mixed with air, but it does not apply to:
a) mines susceptible to firedamp;
b) the processing and manufacture of explosives;
c) catastrophic failures or rare malfunctions which are beyond the concept of normality dealt with in this standard;
d) rooms used for medical purposes;
e) domestic premises;
f) where a hazard may arise due to the presence of combustible dusts or combustible flyings but the principles may be used in assessment of a hybrid mixture.
Flammable mists may form or be present at the same time as flammable vapour. In such case the strict application of the details in this document may not be appropriate. Flammable mists may also form when liquids not considered to be a hazard due to the high flash point are released under pressure. In these cases the classifications and details given in this document do not apply.
For the purpose of this document, an area is a three-dimensional region or space.
Atmospheric conditions include variations above and below reference levels of 101,3 kPa (1 013 mbar) and 20 °C (293 K), provided that the variations have a negligible effect on the explosion properties of the flammable substances.
In any site, irrespective of size, there may be numerous sources of ignition apart from those associated with equipment. Appropriate precautions will be necessary to ensure safety in this context. This standard is applicable with judgement for other ignition sources but in some applications other safeguards may also need to be considered. E.g. larger distances may apply for naked flames when considering hot work permits.
This document does not take into account the consequences of ignition of an explosive atmosphere except where a zone is so small that if ignition did occur it would have negligible consequences.
This third edition of IEC 60079-10-1 cancels and replaces the second edition, published in 2015, and constitutes a technical revision, see foreword for further details.

  • Standard
    115 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies analysis and evaluation procedures for determining self-ignition temperatures (TSI) of combustible dusts or granular materials as a function of volume by hot storage experiments in ovens of constant temperature. The specified test method is applicable to any solid material for which the linear correlation of lg (V/A) versus the reciprocal self-ignition temperature 1/TSI (with TSI in K) holds (i.e. not limited to only oxidatively unstable materials).
This European Standard is not applicable to the ignition of dust layers or bulk solids under aerated conditions (e.g. as in fluid bed dryer).
This European Standard shall not be applied to dusts like recognised explosives that do not require atmospheric oxygen for combustion, nor to pyrophoric materials.
NOTE   Because of regulatory and safety reasons "recognised explosives" are not in the scope of this European Standard. In spite of that, substances which undergo thermal decomposition reactions and which are not "recognised explosives" but behave very similarly to self-ignition processes when they decompose are in the scope. If there are any doubts as to whether the dust is an explosive or not, experts should be consulted.

  • Standard
    35 pages
    English language
    sale 10% off
    e-Library read for
    1 day

2021-03-25 CV: rejected for OJEU citation but corrigenda are out of EY scope
TAN - // IEC Corrigendum

  • Corrigendum
    3 pages
    English and French language
    sale 10% off
    e-Library read for
    1 day

ISO/IEC 80079-34:2018 specifies particular requirements and information for establishing and maintaining a quality management system to manufacture Ex Products in accordance with the certificates. While it does not preclude the use of other quality management systems that are compatible with the objectives of ISO 9001:2015 and which provide equivalent results, the minimum requirements are given in this document.
This second edition cancels and replaces the first edition, published in 2011, and constitutes a full technical revision. The significant changes with respect to the previous edition should be considered as minor technical revisions. However, the clause numbering in regard to the previous edition has changed in order to be in line with ISO 9001:2015. The normal “Table of Significant Changes” has not been included for this reason.
This publication is published as a double logo standard. This standard should be read in conjunction with ISO 9001:2015

  • Standard
    89 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60079-19:2019 gives instructions, principally of a technical nature, on the repair, overhaul, reclamation and modification of equipment designed for use in explosive atmospheres; it is not applicable to maintenance, other than when repair and overhaul cannot be disassociated from maintenance, neither does it give advice on cable entry systems which may require a renewal when the equipment is re-installed.
This fourth edition cancels and replaces the third edition published in 2010 together with Amendment 1:2015. This edition constitutes a technical revision.
The significance of the changes between IEC 60079-19, Edition 3 (2010), including Amendment 1 (2015), and IEC 60079-19, Edition 4 (2019) are defined in the foreword and cover minor and editorial changes, extension, and major technical changes.

  • Standard
    85 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO/IEC 80079-20-1:2017 is published as a dual log standard and provides guidance on classification of gases and vapours. It describes a test method intended for the measurement of the maximum experimental safe gaps (MESG) for gas-air mixtures or vapour-air mixtures under normal conditions of temperature and pressure (20 °C, 101,3 kPa) so as to permit the selection of an appropriate group of equipment. This document also describes a test method intended for use in the determination of the auto-ignition temperature (AIT) of a vapour-air mixture or gas-air mixture at atmospheric pressure, so as to permit the selection of an appropriate temperature class of equipment. Values of chemical properties of materials are provided to assist in the selection of equipment to be used in hazardous areas. Further data may be added as the results of validated tests become available. The materials and the characteristics included in a table (see Annex B) have been selected with particular reference to the use of equipment in hazardous areas. The data in this document have been taken from a number of references which are given in the bibliography. These methods for determining the MESG or the AIT may also be used for gas-air-inert mixtures or vapour-air-inert mixtures. However, data on air-inert mixtures are not tabulated.
Keywords: classification of gases and vapours, measurement of the maximum experimental safe gaps (MESG)

  • Standard
    93 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies general requirements for design, testing and performance, and describes the test methods that apply to portable, transportable and fixed equipment for the measurement of the oxygen concentration in gas mixtures indicating up to 25 % (v/v). The equipment, or parts thereof, may be intended for use in explosive atmospheres (see 4.1) and in mines susceptible to firedamp.
This document applies to equipment intended for monitoring oxygen deficiency and enrichment.
EXAMPLE   Monitoring oxygen deficiency and/or enrichment includes:
-   protection of human health and safety in potentially oxygen deficient atmospheres;
-   fire protection by monitoring areas with reduced oxygen concentration;
-   fire protection by monitoring oxygen concentrations exceeding that of normal ambient air.
This document also applies to equipment with an oxygen measuring function for explosion protection in the case of monitoring inertisation.
NOTE 1   Inertisation is an explosion protection technique where a potentially explosive atmosphere is purged with inert gas.
NOTE 2   Commonly used oxygen sensors in commercial equipment for industrial application are:
-   electrochemical sensors (aqueous and solid electrolytes);
-   paramagnetic sensors;
-   zirconium dioxide sensors;
-   tunable diode laser absorption spectroscopy sensors (TDLAS).
This document is applicable to equipment intended to measure reliably the oxygen concentration, to provide an indication, alarm or other output function, the purpose of which is to give a warning of a potential hazard and, in some cases, to initiate automatic or manual protective action(s), whenever the level exceeds or falls below an alarm set point.
This document is applicable to equipment, including integral sampling systems of aspirated equipment, intended to be used for commercial, industrial and non-residential safety applications.
This document does not apply to external sampling systems, or to equipment of laboratory or scientific type, or to medical equipment, or to equipment used only for process monitoring and/or control purposes. For equipment used for sensing the presence of multiple gases, this document applies only to the measurement of oxygen.
This document is also applicable to equipment using optical principles (e.g. TDLAS), where the optical transmitter and receiver or the optical transceiver (i.e. combined transmitter and receiver) and a suitable reflector are not located in a common enclosure. However, in this case it will be necessary to modify the test conditions described in Clause 5.3 and to introduce supplementary tests to Clause 5.4 of this document. Such supplementary tests will include alignment, beam block fault, long range operation. Guidance to appropriate modification of the test conditions and supplementary tests can be taken from EN 60079 29 4. Modifications of the test conditions as well as modified and supplementary tests are expected to be agreed between the manufacturer and test laboratory and identified and described in the test report.

  • Standard
    37 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This Technical Specification specifies the construction, testing, installation and maintenance of Power i apparatus and systems which utilise electronically controlled spark duration limitation to maintain an adequate level of intrinsic safety.
This Technical Specification contains requirements for intrinsically safe apparatus and wiring intended for use in explosive atmospheres and for associated apparatus intended for connection to intrinsically safe circuits entering such atmospheres.
This Technical Specification excludes the level of protection “ia” and the use of software controlled circuits.
This Technical Specification applies to electrical equipment utilising voltages not
higher than 40 V d.c. and a safety factor 1,5 for Groups IIB, IIA, I and III. It is also applicable to Group IIC “ic” apparatus with a safety factor 1,0. Group IIC “ib” apparatus with a safety factor 1,5 are restricted to voltages up to 32 V d.c.
This type of protection is applicable to electrical equipment in which the electrical circuits themselves are incapable of causing an explosion of the surrounding explosive atmospheres. This Technical Specification is applicable to intrinsically safe apparatus and systems which utilise electronically controlled spark duration limitation with the aim of providing more electrical power while maintaining an adequate level of safety. This Technical Specification is also applicable to electrical equipment or parts of electrical equipment located outside
hazardous areas or protected by another type of protection listed in the IEC 60079 series, where the intrinsic safety of the electrical circuits in explosive atmospheres depends on the design and construction of such electrical equipment or parts of such electrical equipment. The electrical circuits located in the hazardous area are evaluated for use in such locations by applying his Technical Specification. This Technical Specification supplements and modifies the requirements of IEC 60079-0, IEC 60079-11, IEC 60079-14, IEC 60079-17 and IEC 60079-25.

  • Technical specification
    54 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies methods for the identification and assessment of hazardous situations leading to explosion and the design and construction measures appropriate for the required safety. This is achieved by:
-   risk assessment;
-   risk reduction.
The safety of equipment, protective systems and components can be achieved by eliminating hazards and/or limiting the risk, i.e. by:
a)   appropriate design (without using safeguarding);
b)   safeguarding;
c)   information for use;
d)   any other preventive measures.
Measures in accordance with a) (prevention) and b) (protection) against explosions are dealt with in Clause 6, measures according to c) against explosions are dealt with in Clause 7. Measures in accordance with d) are not specified in this document. They are dealt with in EN ISO 12100:2010, Clause 6.
The preventive and protective measures described in this document will not provide the required level of safety unless the equipment, protective systems and components are operated within their intended use and are installed and maintained according to the relevant codes of practice or requirements.
This document specifies general design and construction methods to help designers and manufacturers in achieving explosion safety in the design of equipment, protective systems and components.
This document is applicable to any equipment, protective systems and components intended to be used in potentially explosive atmospheres, under atmospheric conditions. These atmospheres can arise from flammable/combustible substances processed, used or released by the equipment, protective systems and components or from materials in the vicinity of the equipment, protective systems and components and/or from the materials of construction of the equipment, protective systems and components.
This document is applicable to equipment, protective systems and components at all stages of its use.
This document is only applicable to equipment group II which is intended for use in other places than underground parts of mines and those parts of surface installations of such mines endangered by firedamp and/or combustible dust.
This document is not applicable to:
1)   medical devices intended for use in a medical environment;
2)   equipment, protective systems and components where the explosion hazard results exclusively from the presence of explosive substances or unstable chemical substances;
3)   equipment, protective systems and components where the explosion can occur by reaction of substances with other oxidizers than atmospheric oxygen or by other hazardous reactions or by other than atmospheric conditions;
4)   equipment intended for use in domestic and non-commercial environments where potentially explosive atmospheres may only rarely be created, solely as a result of the accidental leakage of fuel gas;
5)   personal protective equipment covered by Regulation (EU) 2016/425;
6)   seagoing vessels and mobile offshore units together with equipment on board such vessels or units;
7)   means of transport, i.e. vehicles and their trailers intended solely for transporting passengers by air or by road, rail or water networks, as well as means of transport insofar as such means are designed for transporting goods by air, by public road or rail networks or by water; vehicles intended for use in a potentially explosive atmosphere shall not be excluded;
8)   the design and construction of systems containing desired, controlled combustion processes, unless they can act as ignition sources in potentially explosive atmospheres.

  • Standard
    47 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Technical Report applies to bucket elevators that may handle combustible products capable of producing potentially explosive atmospheres of dust or powder inside the bucket elevator during its operation. The precautions to control ignition sources will also be relevant where the product in the bucket elevator creates a fire risk but not an explosion risk.
For the purposes of this report, a bucket elevator is defined as an item of bulk material handling equipment that carries material in powder form or as coarse products such as whole grain, wood chips or flakes, in a vertical direction by means of a continuous movement of open containers.
This Technical Report specifies the principles of and guidance for fire and explosion prevention and explosion protection for bucket elevators.
Prevention is based on the avoidance of effective ignition sources, either by the elimination of ignition sources or the detection of ignition sources.
Explosion protection is based on the application of explosion venting, explosion suppression or explosion containment and explosion isolation rules specifically adapted for bucket elevators. These specific rules may be based on agreed test methods.
This European Technical Report does not apply to products that do not require atmospheric oxygen for combustion.

  • Technical report
    63 pages
    English language
    sale 10% off
    e-Library read for
    1 day

NEW!IEC 60079-15:2017 is available as IEC 60079-15:2017 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.

IEC 60079-15:2017 specifies requirements for the construction, testing and marking for Group II electrical equipment with type of protection “n” which includes; sealed devices “nC”, hermetically sealed devices “nC”, non-incendive components “nC” and restricted breathing enclosures “nR” intended for use in explosive gas atmospheres. This part of IEC 60079 applies to electrical equipment where the rated input voltage does not exceed 15 kV r.m.s. AC or DC including where the internal working voltages of the Ex product exceeds 15 kV, for example starters for HID luminaires. This part of IEC 60079 supplements and modifies the general requirements of IEC 60079-0, except as indicated in Table 1 (Clause 1). Where a requirement of this part of IEC 60079 conflicts with a requirement of IEC 60079-0, the requirement of this part of IEC 60079 takes precedence. This fifth edition cancels and replaces the fourth edition, published in 2010, and constitutes a technical revision. Refer to the Forward of the document for a complete listing of the technical changes between edition 5.0 and the previous edition of the document.
Keywords: Group II electrical equipment with type of protection “n”

  • Standard
    36 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC/TS 60079-32-1:2013(E) gives guidance about the equipment, product and process properties necessary to avoid ignition and electrostatic shock hazards arising from static electricity as well as the operational requirements needed to ensure safe use of the equipment, product or process. It can be used in a risk assessment of electrostatic hazards or for the preparation of product family or dedicated product standards for electrical or non-electrical machines or equipment. The purpose of this document is to provide standard recommendations for the control of static electricity, such as earthing of conductors, reduction of charging and restriction of chargeable areas of insulators. In some cases static electricity plays an integral part of a process, e.g. electrostatic coating, but often it is an unwelcome side effect and it is with the latter that this guidance is concerned. If the standard recommendations given in this document are fulfilled it can be expected that the risk of hazardous electrostatic discharges in an explosive atmosphere is at an acceptably low level. Keywords: risk assessment of electrostatic hazards, static electricity

  • Technical report
    182 pages
    English language
    sale 10% off
    e-Library read for
    1 day