ENV 50275-1:1998
(Main)Conductive charging for electric vehicles - Part 1: General considerations
- BACK
- 28-Oct-1998
- 43.120
- CLC/TC 69X
Conductive charging for electric vehicles - Part 1: General considerations
Withdrawn by CLC/TS 50457-1:2008 (PR=16661) and CLC/TS 50457-2:2008 (PR=16662) (2007-03-01)
Konduktive Ladung von Elektrofahrzeugen - Teil 1: Allgemeine Überlegungen
Charge conductive pour véhicules éléctriques - Partie 1: Généralités
Conductive charging for electric vehicles - Part 1: General considerations
General Information
Standards Content (Sample)
SLOVENSKI STANDARD
01-september-2002
Conductive charging for electric vehicles - Part 1: General considerations
Conductive charging for electric vehicles -- Part 1: General considerations
Konduktive Ladung von Elektrofahrzeugen -- Teil 1: Allgemeine Überlegungen
Charge conductive pour véhicules éléctriques -- Partie 1: Généralités
Ta slovenski standard je istoveten z: ENV 50275-1:1998
ICS:
43.120 (OHNWULþQDFHVWQDYR]LOD Electric road vehicles
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
...
This May Also Interest You
IEC 63380-2:2025 defines the secure information exchange between local energy management systems and electric vehicle charging stations. The local energy management systems communicate to the charging station controllers via the resource manager. This document maps the generic use case functions defined in IEC 63380-1 to specific data model. This edition of this document defines specifically SPINE Resources and ECHONET Lite Resources mapped from the high-level use case functions defined in IEC 63380-1.
- Draft232 pagesEnglish languagesale 10% offe-Library read for×1 day
IEC 62840-1:2025 gives the general overview for battery swap systems, for the purposes of swapping batteries of electric road vehicles when the vehicle powertrain is turned off and when the battery swap system is connected to the supply network at standard supply voltages according to IEC 60038 with a rated voltage up to 1 000 V AC and up to 1 500 V DC. This document is applicable for battery swap systems for EV equipped with one or more – swappable battery systems (SBS), or – handheld-swappable battery systems (HBS). This document provides guidance for interoperability. This document applies to • battery swap systems supplied from on-site storage systems (for example buffer batteries etc), • manual, mechanically assisted and automatic systems, • battery swap systems intended to supply SBS/HBS having communication allowing to identify the battery system characteristics, and • battery swap systems intended to be installed at an altitude of up to 2 000 m. This document is not applicable to • aspects related to maintenance and service of the battery swap station (BSS), • trolley buses, rail vehicles and vehicles designed primarily for use off-road, • maintenance and service of EVs, • safety requirements for mechanical equipment covered by the ISO 10218 series, • locking compartments systems providing AC socket-outlets for the use of manufacturer specific voltage converter units and manufacturer specific battery systems, • electrical devices and components, which are covered by their specific product standards, • any fix-installed equipment of EV, which is covered by ISO, and • EMC requirements for on-board equipment of EV while connected to the BSS. This first edition cancels and replaces the first edition of IEC TS 61280-1 published in 2016. This edition includes the following significant technical changes with respect to IEC TS 61280-1:2016: a) expanded scope to include handheld-swappable battery systems (HBS) and guidance on interoperability; b) added definitions for "handheld-swappable battery system" (HBS) and expanded related terms such as "SBS/HBS coupler," "SBS/HBS charger," etc; c) added classifications based on supply network characteristics, connection method, access and type of BSS; d) added support for HBS, detailing the different compositions and workflows for type A (SBS) and type B (HBS) battery swap stations; e) added requirements for functional interoperability, interface interoperability, data interoperability, operational interoperability, compatibility with legacy systems, and scalability; f) added requirements for communication, protection against electric shock, specific requirements for accessories), cable assembly requirements, BSS constructional requirements, overload and short circuit protection, EMC, emergency switching or disconnect, marking and instructions; g) expanded annex content, adding solutions for manual swapping stations for motorcycles with HBS and updating use cases.
- Standard37 pagesEnglish languagesale 10% offe-Library read for×1 day
IEC 63380-1:2025 defines the secure information exchange between local energy management systems and electric vehicle charging stations. The local energy management systems communicate to the charging station controllers via the resource manager. This document specifies use cases, the sequences of information exchange and generic data models.
- Standard157 pagesEnglish languagesale 10% offe-Library read for×1 day
IEC 63584:2024 The Open Charge Point Protocol (OCPP) provides the communication between a Charging Station and a Charging Station Management System (CSMS) and is designed to accommodate any type of charging technique. It is based on OCPP 2.0.1 and was submitted as a Fast-Track document.
- Standard1535 pagesEnglish languagesale 10% offe-Library read for×1 day
- 13-Feb-2025
- 43.120
- 2023/1804
- M/581
- CLC/TC 69X
IEC 61851-24:2023, together with IEC 61851-23, applies to digital communication between a DC EV supply equipment and an electric road vehicle (EV) for control of conductive DC power transfer, with a rated supply voltage up to 1 000 V AC or up to 1 500 V DC and a rated output voltage up to 1 500 V DC. This document also applies to digital communication between the DC EV charging/discharging station and the EV for system A, as specified in Annex A. The EV charging mode is mode 4, according to IEC 61851-23. Annex A, Annex B, and Annex C give descriptions of digital communications for control of DC charging specific to DC EV charging systems A, B and C as defined in IEC 61851-23. This second edition cancels and replaces the first edition published in 2014. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: - Annex A and Annex B have been updated in line with IEC 61851-23:2023 and relevant standards.
- Standard55 pagesEnglish languagesale 10% offe-Library read for×1 day
- 05-Dec-2024
- 06-Mar-2022
- 43.120
- 2014/35/EU
- 2014/53/EU
- M/468
- M/511
- M/536
- CLC/TC 69X
This part of IEC 61851-3 series as a technical specification together with part 3-1 and with part 1 of IEC61851, applies to communication for the conductive transfer of electric power between the supply network and a light electric road vehicle to a removable RESS or traction-battery of a light EV when connected to the supply network, with a rated supply voltage up to 480 V a.c. or up to 400 V d.c. and a rated ìoutputî voltage up to 480 V a.c. or up to 200 V d.c.. Energy management system for control of power transfer between battery systems and voltage converter units specifies the communication for all devices that may take part in energy management control. Such energy control applications may be implemented in e.g. light electric vehicles, robots, offshore parks, isolated farms, etc. This part of IEC 61851-3 series provides application objects provided by the AC-DC voltage converter unit or DC/DC voltage converter unit
- Technical specification165 pagesEnglish languagesale 10% offe-Library read for×1 day
- 21-Dec-2023
- 43.120
- 2014/94/EU
- M/533
- CLC/TC 69X
This part of IEC 61851-3 series (in a first step as Technical Specification for three-year period) together with part 1 of IEC 61851, applies to the equipment for the conductive transfer of electric power between the supply network and an electric road vehicle when connected to the supply network, supply voltage up to 480 V a.c. or up to 400 V d.c. and a rated output voltage up to 480 V a.c. or up to 200 V d.c..The supply systems described in the IEC 61851-3 series are primarily intended for the use by electric road vehicles of category L hereinafter referred to as light electric vehicles (light Evs). NOTE 1 Light EV includes all electrically propelled two and three wheeled vehicles of Category L1 up to Category L7 according to the definition of ECE-TRANS-WP29-78r2e and all electrically propelled or assisted cycles.Light electric road vehicles (light EVs) imply all road vehicles, including plug-in hybrid road vehicles (PHEV), that derive all or part of their energy from on-board rechargeable energy storage systems, (RESS), including traction batteries.The electrical protection of the complete light EV supply system from the connection to the supply network up to the light EV or removed RESS complies with protective separation between mains and d.c. and with galvanic separation between mains and d.c. or class III.Supplementary requirements for output voltages over 60 V d.c. are given in this document.Supplementary requirements for Class III equipment with output voltages over 15 V d.c. and over 6 V a.c. are given in this document.Requirements for bidirectional energy transfer d.c. to a.c. are under consideration and are not part of this edition. NOTE 2 This standard is not mandatory for proprietary EV supply system configurations Type B or D according to IEC 61851-3 series provided they have equivalent or higher safety levels.
- Technical specification57 pagesEnglish languagesale 10% offe-Library read for×1 day
- 21-Dec-2023
- 43.120
- 2014/94/EU
- M/533
- CLC/TC 69X
This part of IEC 61851-3 series as a technical specification together with part 3-1 and with part 1 of IEC61851, applies to communication for the conductive transfer of electric power between the supply network and a light electric road vehicle to a removable RESS or traction-battery of a light EV when connected to the supply network, with a rated supply voltage up to 480 V a.c. or up to 400 V d.c. and a rated ìoutputî voltage up to 480 V a.c. or up to 200 V d.c.. Energy management system for control of power transfer between battery systems and voltage converter units specifies the communication for all devices that may take part in energy management control. Such energy control applications may be implemented in e.g. light electric vehicles, robots, offshore parks, isolated farms, etc. This part of IEC 61851-3 series specifies application objects provided by the battery system.
- Technical specification109 pagesEnglish languagesale 10% offe-Library read for×1 day
- 21-Dec-2023
- 43.120
- 2014/94/EU
- M/533
- CLC/TC 69X
This part of IEC 61851-3 series (in a first step as Technical Specification for three-year period) together with part 1 of IEC 61851-3, applies to communication for the conductive transfer of electric power between the supply network and a light electric road vehicle or a removable RESS or traction-battery of a light electric road vehicle, with a rated supply voltage up to 480 V a.c. or up to 400 V d.c. and a rated ìoutputî voltage up to 480 V a.c. or up to 200 V d.c.. Energy management system for control of power transfer between battery systems and voltage converter units specifies the communication for all devices that may take part in energy management control. The basic application profile for energy management systems consists of the following parts: Part 3-4: General definitions for communication; Part 3-5: Pre-defined communication parameters and general application objects; Part 3-6: Voltage converter unit communication; Part 3-7: Battery system communication.
- Technical specification106 pagesEnglish languagesale 10% offe-Library read for×1 day
- 21-Dec-2023
- 43.120
- 2014/94/EU
- M/533
- CLC/TC 69X
This part of IEC 61851-3 series (in a first step as Technical Specification for three-year period) together with part 1 of IEC61851-3, applies to communication for the conductive transfer of electric power between the supply network and a light electric road vehicle or a removable RESS or traction-battery of a light electric road vehicle, with a rated supply voltage up to 480 V a.c. or up to 400 V d.c. and a rated ìoutputî voltage up to 480 V a.c. or up to 200 V d.c.. Energy management system for control of power transfer between battery systems and voltage converter units specifies the communication for all devices that may take part in energy management control. Such energy control applications may be implemented in e.g. light electric vehicles, robots, offshore parks, isolated farms, etc. This part of IEC 61851-3 series provides specifications with regard to the pre-defined communication parameters and general application objects.
- Technical specification176 pagesEnglish languagesale 10% offe-Library read for×1 day
- 21-Dec-2023
- 43.120
- 2014/94/EU
- M/533
- CLC/TC 69X
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.