SIST EN 14738:2004
(Main)Space product assurance - Hazard analysis
Space product assurance - Hazard analysis
This European Standard specifies the hazard analysis requirements of EN ISO 14620-1:2002, 6.4.2; it specifies the principles, process, implementation, and requirements of hazard analysis.
It is applicable to all European space projects where during any project phase there exists the potential for hazards to personnel or the general public, space flight systems, ground support equipment, facilities, public or private property or the environment.
Raumfahrtproduktsicherung - Gefahrenanalyse
Assurance produit des projets spatiaux - Analyse des dangers
Zagotavljanje varnih proizvodov v vesoljski tehniki – Analiza nevarnosti
General Information
Relations
Standards Content (Sample)
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.Zagotavljanje varnih proizvodov v vesoljski tehniki – Analiza nevarnostiRaumfahrtproduktsicherung - GefahrenanalyseAssurance produit des projets spatiaux - Analyse des dangersSpace product assurance - Hazard analysis49.140Vesoljski sistemi in operacijeSpace systems and operationsICS:Ta slovenski standard je istoveten z:EN 14738:2004SIST EN 14738:2004en01-september-2004SIST EN 14738:2004SLOVENSKI
STANDARD
SIST EN 14738
...
This May Also Interest You
ISO 16091:2002 describes the set of management requirements needed to identify and provide logistic support, so the customer can operate and maintain a product in its operational environment for the expected lifetime.
These requirements also aim, throughout the product life cycle, at implementing everything pertinent to the control of the risks considered as critical regarding the operational objectives.
The management requirements are applicable to those activities necessary to design, develop, deliver, deploy and manage an organized and structured set of materials and software, services, processes and information dedicated to support the system throughout its life cycle.
ISO 16091:2002 specifies management, studies, production activities, information management processes and tasks to meet the customer's need for logistic support.
When viewed from the perspective of a specific programme or project context, the requirements defined in ISO 16091:2002 should be tailored to match the genuine requirements of a particular profile and circumstances of a programme or project.
- Standard27 pagesEnglish languagesale 10% offe-Library read for×1 day
This document is intended to stablish and define functional and performance requirements and associated tests for Galileo Timing Receivers. This document covers the following topics related to Galileo Timing Receivers:
- GNSS constellations and frequencies processed: Galileo plus additionally GPS, with nominal mode being dual-frequency processing,
- Time scales processed, including at least Galileo System Time and Universal Time Coordinate,
- User dynamics, with two operation modes: static users with well-known and static antenna position and dynamics users with moving antenna,
- Holdover devices,
- Nominal and back-up modes, including single-frequency modes, single-constellation modes and holdover mode.
- Processing of timing integrity information disseminated by the Galileo System,
- Time Receiver Autonomous Integrity Monitoring processing,
- Anti-jamming and anti-spoofing capabilities, including Automatic Gain Control monitoring and Galileo Open Service Navigation Message Authentication processing,
- Robustness to multipath.
In addition, this document gives guidelines for the installation and maintenance of the receiver, including antenna, cabling and receiver installation, initial and periodic receiver calibration, and periodic maintenance.
On top of the functional requirements, performance requirements this document defines in terms of different key performance indicators such as:
- Accuracy, availability, continuity and integrity requirements,
- T-RAIM performances, including time to alert,
- Holdover performances including maximum degradation of the timing solution with time and maximum holdover time,
This document also gives a simple test suite to verify the most fundamental requirements of the Galileo Timing Receivers.
- Standard112 pagesEnglish languagesale 10% offe-Library read for×1 day
This activity w ill be the parallel development of EN 16603-20-40 and ECSS-E-ST-20-40C.
The scope shall cover the areas of existing ASIC and FPGA engineering chapter 5 of ECSS-Q-ST-60-02C, but w ith w ider breadth and greater depth, covering engineering requirements of end-to-end development flow s, from specification of requirements to validation of prototypes, of the follow ing monolithic devices for its use in space:
• ASICs (distinguishing digital, analogue and mixed-signal development flow s)
• FPGAs (distinguishing three technology families: SRAM, FLASH and anti-fuse technologies)
• ASIC and FPGA System-on-Chip embedding processor cores w hich have external “softw are programme” dependencies to be addressed during the SoC development, resulting in SW-HW co-design requirements.
- Standard139 pagesEnglish languagesale 10% offe-Library read for×1 day
This document defines the primary space debris mitigation requirements applicable to all elements of unmanned systems launched into, or passing through, near-Earth space, including launch vehicle orbital stages, operating spacecraft and any objects released as part of normal operations.
- Standard20 pagesEnglish languagesale 10% offe-Library read for×1 day
Scope remains unchanged.
This Standard establishes the basic rules and general principles applicable to the electrical, electronic, electromagnetic, microwave and engineering processes. It specifies the tasks of these engineering processes and the basic performance and design requirements in each discipline.
It defines the terminology for the activities within these areas.
It defines the specific requirements for electrical subsystems and payloads, deriving from the system engineering requirements laid out in EN 16603-10 (equivalent of ECSS-E-ST-10 "Space engineering - System engineering general requirements".)
- Standard135 pagesEnglish languagesale 10% offe-Library read for×1 day
This Standard specifies the general requirements for the qualification, procurement, storage and delivery of photovoltaic assemblies, solar cell assemblies, bare solar cells, coverglasses and protection diodes suitable for space applications.
This standard does not cover the particular qualification requirements for a specific mission.
This Standard primarily applies to qualification approval for photovoltaic assemblies, solar cell assemblies, bare solar cells, coverglasses and protection diodes, and to the procurement of these items.
This standard is limited to crystaline Silicon and single and multi-junction GaAs solar cells with a thickness of more than 50 m and does not include thin film solar cell technologies and poly-crystaline solar cells.
This Standard does not cover the concentration technology, and especially the requirements related to the optical components of a concentrator (e.g. reflector and lens) and their verification (e.g. collimated light source).
This Standard does not apply to qualification of the solar array subsystem, solar panels, structure and solar array mechanisms.
- Standard230 pagesEnglish languagesale 10% offe-Library read for×1 day
This standard defines the requirements for selection, control, procurement and
usage of EEE commercial components for space projects.
This standard is applicable to commercial parts from the following families:
• Ceramic capacitors chips
• Solid electrolyte tantalum capacitors chips
• Discrete parts (transistors, diodes, optocouplers)
• Fuses
• Magnetic parts
• Microcircuits
• Resistors chips
• Thermistors
In addition for families of EEE components not addressed by the present ECSS
standard, it can be used as guideline on case by case basis.
The requirements of this document are applicable to all parties involved at all
levels in the integration of EEE commercial components into space segment
hardware and launchers.
This standard may be tailored for the specific characteristics and constrains of a
space project in conformance with ECSS-S-ST-00
- Standard106 pagesEnglish languagesale 10% offe-Library read for×1 day
This Standard specifies the processing and quality assurance requirements for
brazing processes for space flight applications. Brazing is understood as the
joining and sealing of materials by means of a solidification of a liquid filler
metal.
The term brazing in this standard is used as equivalent to soldering, in cases that
the filler materials have liquidus temperatures below 450 °C.
Brazing and soldering are allied processes to welding and this standard is
supplementing the standard for welding ECSS-Q-ST-70-39.
This standard does not cover requirements for:
• Joining processes by adhesive bonding (ECSS-Q-ST-70-16),
• Soldering for electronic assembly purposes (ECSS-Q-ST-70-61),
• Soldering used in hybrid manufacturing (ESCC 2566000).
The standard covers but is not limited to the following brazing processes:
• Torch brazing,
• Furnace brazing,
• Dip Brazing and Salt-bath brazing,
• Induction Brazing.
This Standard does not detail the brazing definition phase and brazing pre-
verification phase, including the derivation of design allowables.
This standard may be tailored for the specific characteristic and constraints of a
space project in conformance with ECSS-S-ST-00.
- Standard39 pagesEnglish languagesale 10% offe-Library read for×1 day
The Scope of the Standard remains unchanged.
This standard defines the requirements for selection, control, procurement and usage of EEE components for space projects.
This standard differentiates between three classes of components through three different sets of standardization requirements (clauses) to be met.
The three classes provide for three levels of trade-off between assurance and risk. The highest assurance and lowest risk is provided by class 1 and the lowest assurance and highest risk by class 3. Procurement costs are typically highest for class 1 and lowest for class 3. Mitigation and other engineering measures may decrease the total cost of ownership differences between the three classes. The project objectives, definition and constraints determine which class or classes of components are appropriate to be utilised within the system and subsystems.
a. Class 1 components are described in Clause 4.
b. Class 2 components are described in Clause 5
c. Class 3 components are described in Clause 6.
The requirements of this document apply to all parties involved at all levels in the integration of EEE components into space segment hardware and launchers.
- Standard103 pagesEnglish languagesale 10% offe-Library read for×1 day
This standard defines:
- the basic requirements for the verification and approval of automatic machine w ave soldering for use in spacecraft hardware. The process requirements for w ave soldering of doublesided and multilayer boards are also defined.
- the technical requirements and quality assurance provisions for the manufacture and verification of manuallysoldered, high-reliability electrical connections.
- the technical requirements and quality assurance provisions for the manufacture and verification of high-reliability electronic circuits based on surface mounted device (SMD) and mixed technology.
- the acceptance and rejection criteria for high reliability manufacture of manually-soldered electrical connections intended to w ithstand normal terrestrial conditions and the vibrational g-loads and environment imposed by space flight.
- the proper tools, correct materials, design and w orkmanshipt. Workmanship standards are included to permit discrimination betw een proper and improper work.
SCOPE
This Standard defines the technical requirements and quality assurance provisions for the manufacture and verification of high-reliability electronic circuits of surface mount, through hole and solderless assemblies.
The Standard defines w orkmanship requirements, the acceptance and rejection criteria for high-reliability assemblies intended to withstand normal terrestrial conditions and the environment imposed by space flight.
The mounting and supporting of components, terminals and conductors specified in this standard applies only to assemblies designed to continuously operate over the mission w ithin the temperature limits of -55 °C to +85 °C at solder joint level.
Requirements related to printed circuit boards are contained in ECSS-Q-ST-70-60 (equivalent to EN 16602-70-60) and ECSS-Q-ST-70-12 (equivalent to EN 16602-70-12).
This Standard does not cover the qualification and acceptance of the EQM and FM equipment w ith high-reliability electronic circuits of surface mount, through hole and solderless assemblies.
This Standard does not cover verification of thermal properties for component assembly.
This Standard does not cover pressfit connectors.
The qualification and acceptance tests of equipment manufactured in accordance w ith this Standard are covered by ECSS-EST-10-03 (equivalent to EN 16603-10-03).
- Standard253 pagesEnglish languagesale 10% offe-Library read for×1 day
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.