Components for BAC control loops - Valve and actuator assemblies - Part 1: Water-based HVAC applications

This document specifies requirements and test methods of valve-actuator assemblies in individual zone control of water-based HVAC applications.
This document does not apply to control valves of nominal diameter larger than DN50.
This document is applicable to pressure independent and pressure dependent control valve-actuator assemblies of relevant categories: 2-port, 3-port and 6-port valves (if they incorporate a control valve function).
Where a certain control loop as a combination of controller and valve-actuator assembly was assessed under EN 15500-1 [3], this document allows the assessment of the performance of combinations of that controller with different valve-actuator assemblies. The tests in this document ensure that valve/actuator assemblies, as components of control loops, can be replaced with products that provide comparable or better performance.
In hydronic system, valve-actuator assembly is a component of control loop that controls water flow rate according to the application control demand.

Komponenten für BAC‑Regelkreise - Armaturen und Antriebsbaugruppen - Teil 1: Wasserbasierte HLK‑Anwendungen

Dieses Dokument legt Anforderungen und Prüfverfahren für Regel- und Steuereinrichtungen für einzelne Räume oder Zonen bei wasserbasierten HLK Anwendungen fest.
Dieses Dokument ist nicht auf Regelventile mit einem Nenndurchmesser größer als DN 50 anwendbar.
Dieses Dokument ist auf druckunabhängige und druckabhängige Regel- und Steuereinrichtungen der folgenden wesentlichen Kategorien anwendbar: 2 Wege-, 3 Wege- und 6 Wege-Armaturen (sofern sie eine Stellgerätefunktion enthalten).
Wurde ein bestimmter Regelkreis als Kombination bestehend aus Regel- und Steuereinrichtungen nach EN 15500 1 [3] bewertet, ermöglicht dieses Dokument die Bewertung der Leistung von Kombinationen dieser Regler mit verschiedenen Regel- und Steuereinrichtungen. Die Prüfungen in diesem Dokument stellen sicher, dass Regel- und Steuereinrichtungen als Komponenten von Regelkreisen durch Produkte ersetzt werden können, die eine vergleichbare oder bessere Leistung bieten.
In Hydronik-Systemen ist die Regel- und Steuereinrichtung ein Bestandteil des Regelkreises, der die Wasserdurchflussmenge entsprechend den Anforderungen der Anwendung regelt.

Composants pour les boucles d’automatisation et de régulation du bâtiment (BAC) - Ensembles vannes et actionneurs - Partie 1: Applications CVC à eau

Le présent document spécifie les exigences et les méthodes d’essai des ensembles vanne-actionneur pour la régulation de zones individuelles dans les applications CVC à eau.
Ce document ne s’applique pas aux vannes de régulation d’un diamètre nominal supérieur à DN50.
Ce document s’applique aux ensembles vanne-actionneur de régulation dépendants et indépendants de la pression pour les catégories suivantes : vannes à 2 voies, 3 voies et 6 voies (si elles intègrent une fonction de vanne de régulation).
Là où une certaine boucle de régulation agissant en tant que combinaison d’un régulateur et d’un ensemble vanne-actionneur est évaluée conformément à EN 15500-1 [3], ce document permet d’évaluer les performances des combinaisons de ce régulateur avec différents ensembles vanne actionneur. Les essais présentés dans le présent document garantissent que les ensembles vanne actionneur, en tant que composants des boucles de régulation, peuvent être remplacés par des produits proposant des performances comparables ou supérieures.
Dans un système hydronique, l’ensemble vanne-actionneur est un composant de la boucle de régulation qui contrôle le débit d’eau en fonction de la demande de régulation de l’application.

Sestavni deli za krmilno zanko BAC - Sklopi ventilov in aktuatorjev - 1. del: Aplikacije HVAC na vodni osnovi

General Information

Status
Not Published
Publication Date
16-Dec-2025
Current Stage
6055 - CEN Ratification completed (DOR) - Publishing
Start Date
10-Nov-2025
Due Date
02-Feb-2026
Completion Date
10-Nov-2025
Draft
prEN 17691-1:2024 - BARVE
English language
24 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (Sample)


SLOVENSKI STANDARD
oSIST prEN 17691-1:2024
01-december-2024
Sestavni deli za krmilno zanko BAC - Sklopi ventilov in aktuatorjev - 1. del:
Aplikacije HVAC na vodni osnovi
Components for BAC control loops - Valve and actuator assemblies - Part 1: Water-
based HVAC applications
Komponenten für BAC-Regelkreise - Armaturen und Antriebsbaugruppen - Teil 1:
Wasserbasierte HLK-Anwendungen
Composants pour les boucles d’automatisation et de régulation du bâtiment (BAC) -
Ensembles vannes et actionneurs - Partie 1: Applications CVC à eau
Ta slovenski standard je istoveten z: prEN 17691-1
ICS:
91.140.10 Sistemi centralnega Central heating systems
ogrevanja
91.140.30 Prezračevalni in klimatski Ventilation and air-
sistemi conditioning systems
97.120 Avtomatske krmilne naprave Automatic controls for
za dom household use
oSIST prEN 17691-1:2024 en,fr,de
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

oSIST prEN 17691-1:2024
oSIST prEN 17691-1:2024
DRAFT
EUROPEAN STANDARD
prEN 17691-1
NORME EUROPÉENNE
EUROPÄISCHE NORM
October 2024
ICS 91.140.10; 91.140.30; 97.120
English Version
Components for BAC Control Loops - Valve and actuator
assemblies - Part 1: Water-based HVAC applications
Composants d'une boucle de régulation - Vannes et Komponenten für den Gebäudeautomations-Regelkreis
Actionneurs - Partie 1: Applications CVC à base d'eau - Ventil- und Antriebsbaugruppen - Teil 1:
Wasserbasierte HLK-Anwendungen
This draft European Standard is submitted to CEN members for enquiry. It has been drawn up by the Technical Committee
CEN/TC 247.
If this draft becomes a European Standard, CEN members are bound to comply with the CEN/CENELEC Internal Regulations
which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.
This draft European Standard was established by CEN in three official versions (English, French, German). A version in any other
language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC
Management Centre has the same status as the official versions.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and
United Kingdom.
Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are
aware and to provide supporting documentation.
Warning : This document is not a European Standard. It is distributed for review and comments. It is subject to change without
notice and shall not be referred to as a European Standard.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2024 CEN All rights of exploitation in any form and by any means reserved Ref. No. prEN 17691-1:2024 E
worldwide for CEN national Members.

oSIST prEN 17691-1:2024
prEN 17691-1:2024 (E)
Contents Page
European foreword . 3
Introduction . 4
1 Scope . 5
2 Normative references . 5
3 Terms and definitions . 5
4 Symbols and abbreviations . 8
5 Valve-actuator assembly performance . 8
5.1 Performance evaluation . 8
5.2 Control performance . 8
5.3 Flow control characteristic of valve-actuator assembly with 2PT control signal . 9
5.4 Control performance score evaluation . 10
5.5 Product KPIs . 10
6 Interchangeability . 11
6.1 Valve-actuator assembly as component of control loop . 11
6.2 Interchangeability properties . 11
6.2.1 General. 11
6.2.2 Control performance classes (I.-III.) . 11
6.2.3 Flow control characteristic . 11
6.2.4 Sizing and product KPIs . 11
7 Test coverage . 11
7.1 Mandatory tests . 11
7.2 Product families . 12
7.3 Properties of a family of valve-actuator assemblies . 12
7.3.1 General. 12
7.3.2 Valves . 12
7.3.3 Actuators . 12
7.3.4 Required product information. 14
8 Measurement and test method . 14
8.1 General. 14
8.1.1 Closed loop test set-up . 14
8.1.2 Device under testing . 15
8.1.3 Test section . 15
8.1.4 Throttling valves . 16
8.1.5 Test environment . 16
8.2 Test cases . 17
8.2.1 Flow control characteristic . 17
8.2.2 Pressure dependency . 20
Annex A (informative) Example: Interchangeability declaration . 22
Bibliography . 24
oSIST prEN 17691-1:2024
prEN 17691-1:2024 (E)
European foreword
This document (prEN 17691-1:2024) has been prepared by Technical Committee CEN/TC 247 “Building
Automation, Controls and Building Management”, the secretariat of which is held by SNV.
This document is currently submitted to the CEN Enquiry.
This document is part of a series of standards on Components of Building Automation and Control loop. A list
of all parts in a series can be found on the CEN website.
oSIST prEN 17691-1:2024
prEN 17691-1:2024 (E)
Introduction
Various EU Directives and national regulations regarding energy saving and energy performance of buildings
require proof of energy efficiency.
These requirements and rising energy costs are encouraging owners and occupiers of buildings to reduce their
energy consumption. The cost for energy will be a critical factor in property rental and sale in the future.
Building Automation and Controls (BAC) have a strong impact on the energy performance of a building. This
is shown in the existing Building Automation and Control (BAC) standards (mainly [1], [2]). The standards
also show the importance of BAC quality to achieve the desired comfort (e.g., human health and productivity)
at maximum efficiency via control accuracy, BAC functions and BAC strategies.
For the measurement of the control accuracy (CA value) based on European Standard [1], [2]EN 15500-1:2017
and its accompanying Technical Report [3], a controller is tested as part of a control loop, consisting of the
loop elements room temperature sensor / controller / actuator / valve shown in Figure 1:

Key
1 application of a control loop (example water flow heating system)
2 sensor temperature
3 controller
4 actuator
5 valve
Figure 1 — Control loop elements
Both the controller as well as components contribute to the overall performance of a control loop.
A controller can be used in combination with different control loop elements, if they fulfil the requirements of
the interfaces to each other, and if the basic characteristics of the replaced control loop elements are the same.
The EN 17691 series and [4] will cover the different components used in conjunction with a BAC controller.
All these components contribute to the control accuracy of a control loop. These standards will classify the
components.
oSIST prEN 17691-1:2024
prEN 17691-1:2024 (E)
1 Scope
This document specifies requirements and test methods of valve-actuator assemblies in individual zone
control of water-based HVAC applications.
Control valves of nominal diameter larger than DN50 are currently not covered by this document.
Within the scope are pressure independent and pressure dependent control valve-actuator assemblies of
relevant categories: 2-port, 3-port and 6-port valves (if they incorporate a control valve function).
Where a certain control loop as a combination of controller and valve-actuator assembly was assessed under
EN 15500-1:2017, this European Standard allows the assessment of the performance of combinations of that
controller with different valve-actuator assemblies. The tests in this document ensure that valve/actuator
assemblies, as components of control loops, can be replaced with products that provide comparable or better
performance.
In hydronic system, valve-actuator assembly is a component of control loop that controls water flow rate
according to the application control demand. The common Formula (1) describing the flow rate where whole
hydronic system itself has an influence on actual flow rate as differential pressure across control valve-
actuator assembly typically varies during operation.
∆𝑝𝑝
𝑣𝑣
𝑄𝑄 =𝑘𝑘 . (1)

𝑣𝑣
∆𝑝𝑝
1 bar
where
Q [m /h] water flow
k [m /h] flow coefficient of the valve
v
Δp [bar] differential pressure across the valve
v
Δp [bar] 1 bar differential pressure
1bar
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content constitutes
requirements of this document. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document (including any amendments) applies.
EN ISO 7345:2018, Thermal performance of buildings and building components - Physical quantities and
definitions (ISO 7345:2018)
EN 15500-1:2017, Energy Performance of Buildings - Control for heating, ventilating and air conditioning
applications - Part 1: Electronic individual zone control equipment - Modules M3-5, M4-5, M5-5
EN ISO 52000-1:2017, Energy performance of buildings - Overarching EPB assessment - Part 1: General
framework and procedures (ISO 52000-1:2017)
3 Terms and definitions
For the purposes of this document, the terms and definitions given in EN ISO 7345:2018, EN ISO 52000-
1:2017, EN 15500-1:2017 and the following apply.
ISO and IEC maintain terminology databases for use in standardization at the following addresses:
oSIST prEN 17691-1:2024
prEN 17691-1:2024 (E)
— IEC Electropedia: available at http://www.electropedia.org/
— ISO Online browsing platform: available at http://www.iso.org/obp
3.1
control loop
loop that consists of sensors for measurement, controller, actuators, valves and communication of variables
Note 1 to entry: Controlled variables are transmitted from the sensors to the controller. The controller interprets the
signals and generates appropriate manipulated variables based on set-points, which it transmits to the actuators. Process
changes due to disturbances result in new sensor signals identifying the state of the process, which are again transmitted
to the controller.
3.2
control valve
component with the ability to change the fluid flow rate
3.3
actuator
component that is responsible for changing the position of the closure member of the control valve, based on
a signal from a controller
3.4
linear motion control valve
control valve with a linear motion closure member, e.g. globe valve, gate valve
3.5
rotary motion control valve
control valve with a rotary motion closure member, e.g. ball valve, butterfly valve
3.6
valve-actuator assembly
assembly of valve and actuator that forms the DUT (Device Under Test)
3.7
closed position
H , φ
0 0
position of the control valve where the flow passageway is at the minimum
3.8
open position
H, φ
position of the control valve where the flow passageway is at the maximum
3.9
travel
H, φ
[mm]
displacement of the closure member
3.10
nominal travel
H , φ
100 100
[mm]
displacement of the closure member from the closed position to the fully open position
oSIST prEN 17691-1:2024
prEN 17691-1:2024 (E)
3.11
relative travel
h
[%]
ratio of the travel at a given opening compared to the nominal travel
3.12
nominal flow capacity
Q
[m /h]
flow capacity at the open position
3.13
relative flow capacity
[%]
ratio of the capacity at a given opening compared to the nominal capacity
3.14
valve-actuator presetting
Q
[m /h, %]
flow capacity value that can be preset in a valve-actuator assembly (3.6), where presetting can be made on a
valve or an actuator (3.3)
3.15
nominal flow coefficient
k
vs
[m /h]
basic coefficient used to state flow capacity of a control valve (3.2) at fully open position
3.16
relative flow coefficient
[%]
ratio of the flow coefficient at a relative travel to the nominal flow coefficient
3.17
linear characteristic
Φ
characteristic where equal increments of relative travel yield equal increments of relative flow characteristic
3.18
modified equal percentage characteristic
Φ
characteristic which combines inherent linear and inherent equal percentage flow characteristic
3.19
control signal
Y
[V, mA, …]
actuator (3.3) input signal
3.20
nominal control signal
Y
oSIST prEN 17691-1:2024
prEN 17691-1:2024 (E)
[V, mA, …]
control signal value corresponding to valve-actuator position delivering nominal capacity / flow coefficient
3.21
relative control signal
y
[%]
ratio of actual control signal and control signal span: y = Y−Y /Y -Y
0 100 0
3.22
root mean square error
RMSE
measure of the average difference between a statistical model’s predicted values and the actual values
Note 1 to entry: Mathematically, it is the standard deviation of the residuals. Residuals represent the distance between
the regression line and the data points.
4 Symbols and abbreviations
Abbreviation Explanation
VA valve-actuator assembly (3.6)
HVAC heating, ventilation, air conditioning
PICV* pressure independent control valve (3.2)
CV control valve (3.2) (pressure dependent)
BAC building automation and controls
DUT device under testing
2PT 2-point controlled (on/ off)
3PT floating point device, 3-point controlled
MOA modulating device, steadily controlled
BUS digital, networked device, field bus controlled
KPI key performance indicator
RMSE root mean square error
* In the market also referred to as PIBCV: Pressure Independent Balancing & Control Valve.
5 Valve-actuator assembly performance
5.1 Performance evaluation
Valve-actuator assemblies shall be evaluated based on performance properties. Performance properties are
based on tests described in this document and KPIs declared by manufacturer.
5.2 Control performance
Control performance of valve-actuator assemblies shall be evaluated based on two performance properties:
— Flow control characteristic (see section 8.2.1)
oSIST prEN 17691-1:2024
prEN 17691-1:2024 (E)
— Pressure dependency (see section 8.2.2).
Control performance test score shall be obtained by measurement output of flow control characteristic (RMSE
value) multiplied by the pressure dependency test output.
In addition, pressure dependency test result higher than 50% triggers loss of one performance class.
Below examples (Table 1 and Table 2) showing final control performance assessment without and with
pressure dependency penalty.
Table 1
Example control performance assessment - PICV
Test result
Flow control characteristic (RMSE) 4,2
a
Pressure dependency 3%
a
Multiplier 1,03
Test score 4,3
a
max value is 224% as theoretical value for pressure dependent control valve
Table 2
Example control performance assessment - Pressure dependant CV
Test result
Flow control characteristic (RMSE) 4,2
a
Pressure dependency 55%
a
Multiplier 1,55
6,5
Test score
+ additional class deduction
a
max value is 224% as theoretical value for pressure dependent control valve
5.3 Flow control characteristic of valve-actuator assembly with 2PT control signal
Flow control characteristic of valve-actuator assembly (3.6) with 2PT control signal is meaningless as it has
only two positions: open and closed one. However, it is important to be able to compare control performance
of such assembly as valve-actuator assemblies with 2PT control signal are commonly used in real applications.
To allow comparison, this document defines a reference RMSE values for valve-actuator assembly with 2PT
control signal. They are based on comparison of ideal flow control characteristic (for both linear with Φ value
of 1 and EQ with value of 0,25) and theoretical characteristic of valve-actuator assembly with 2PT control
signal (see Figure 2).
oSIST prEN 17691-1:2024
prEN 17691-1:2024 (E)
Corresponding RMSE reference values are:
1 Theoretical 2 Point
2 Φ = 1 (linear): RMSE = 28
3 Φ = 0.25: RMSE = 40
x control signal Y/Y100 [%]
y relative flow Q/Qr [%]
Figure 2 — Theoretical characteristic of valve-actuator assembly with 2PT control signal
5.4 Control performance score evaluation
Resulted value of test score is to be classified into 3 c
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.