EN 14143:2013
(Main)Respiratory equipment - Self-contained re-breathing diving apparatus
Respiratory equipment - Self-contained re-breathing diving apparatus
This European Standard specifies minimum requirements for self-contained re-breathing diving apparatus to ensure a minimum level of safe operation of the apparatus. It applies to the following:
- a maximum depth of 6 m for apparatus using pure oxygen;
- a maximum depth of 40 m for apparatus using oxygen in nitrogen gas mixtures;
- a maximum depth of 100 m for apparatus using oxygen and helium or oxygen, nitrogen and helium gas mixtures;
- water temperatures from 4 °C to 34 °C or outside these temperatures as specified by the manufacturer.
Atemgeräte - Autonome Regenerationstauchgeräte
Diese Europäische Norm legt Mindestanforderungen an autonome Regenerationstauchgeräte fest, um das Mindestmaß für den sicheren Gebrauch des Gerätes sicherzustellen. Sie gilt für Folgendes:
eine maximale Tiefe von 6 m für Geräte mit reinem Sauerstoff;
eine maximale Tiefe von 40 m für Geräte mit Sauerstoff-Stickstoff-Gasgemischen;
eine maximale Tiefe von 100 m für Geräte mit Sauerstoff-Helium- oder Sauerstoff-Stickstoff-Helium-Gasgemischen;
Wassertemperaturen von 4 °C bis 34 °C oder außerhalb dieser Temperaturen wie vom Hersteller festgelegt.
Appareils de protection respiratoire - Appareils de plongée autonome à recyclage de gaz
La présente Norme européenne spécifie les exigences minimales relatives aux appareils de plongée
autonomes à recyclage de gaz visant à assurer un niveau minimal de sécurité dans le fonctionnement des
appareils. Elle s'applique aux conditions suivantes :
- une profondeur maximale de 6 m pour les appareils utilisant de l'oxygène pur ;
- une profondeur maximale de 40 m pour les appareils utilisant des mélanges d'oxygène et d'azote ;
- une profondeur maximale de 100 m pour les appareils utilisant des mélanges d'oxygène et d'hélium ou
des mélanges d'oxygène, d'azote et d'hélium ;
- des températures de l'eau comprises entre 4 °C et 34 °C ou en dehors de ces températures telles que
spécifiées par le fabricant.
Oprema za dihala - Samoreševalni dihalni potapljaški aparati
Ta evropski standard določa minimalne zahteve za samoreševalne dihalne potapljaške aparate za zagotavljanje najmanjše ravni varnega delovanja aparatov. Uporablja se za: – največjo globino 6 m za aparate na čisti kisik; – največjo globino 40 m za aparate na kisik v dušikovih plinskih mešanicah; – največjo globino 100 m za aparate na mešanice kisika in helija ali kisika, dušika in helija; – temperature vode od 4 °C to 34 °C ali zunaj tega temperaturnega razpona v skladu z navodili proizvajalca.
General Information
Relations
Standards Content (Sample)
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.Oprema za dihala - Samoreševalni dihalni potapljaški aparatiAtemgeräte - Autonome RegenerationstauchgeräteAppareils respiratoires - Appareils de plongee autonomes à circuit fermeRespiratory equipment - Self-contained re-breathing diving apparatus13.340.30Varovalne dihalne napraveRespiratory protective devicesICS:Ta slovenski standard je istoveten z:EN 14143:2013SIST EN 14143:2013en,fr,de01-november-2013SIST EN 14143:2013SLOVENSKI
STANDARDSIST EN 14143:20031DGRPHãþD
EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM
EN 14143
July 2013 ICS 13.340.30 Supersedes EN 14143:2003English Version
Respiratory equipment - Self-contained re-breathing diving apparatus
Appareils respiratoire - Appareils de plongée autonome à recyclage de gaz
Atemgeräte - Autonome Regenerationstauchgeräte This European Standard was approved by CEN on 1 May 2013.
CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG
Management Centre:
Avenue Marnix 17,
B-1000 Brussels © 2013 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members. Ref. No. EN 14143:2013: ESIST EN 14143:2013
Requirement clauses and corresponding test clauses of this European Standard . 50 Annex B (normative)
Safety-critical software . 52 B.1 General . 52 B.2 Requirements . 52 Annex C (informative)
Artificial sea water . 55 Annex D (informative)
Details of significant technical changes between this European Standard and the previous edition . 56 Annex ZA (informative)
Relationship between this European Standard and the Essential Requirements of EU Directive 89/686/EEC on Personal Protective Equipment . 57 Bibliography. 58
Tables
....................................................................................................................................................Page
Table 1 — Qualitative likelihood categories . 11 Table 2 — Consequence categories . 11 Table 3 — Risk criteria . 11 Table 4 — Breathing simulator settings . 15 Table 5 — Hydrostatic imbalance . 17 Table 6 — Accuracy of the displayed partial pressure of oxygen . 22 Table 7 — Respiratory volume . 33 Table 8 — Breathing simulator respiratory exchange settings. 36 Table 9 — Test sequence (if applicable) . 45 SIST EN 14143:2013
Figure 1 — Reference points. 15 Figure 2 — Analysis of pressure volume loop . 16 Figure 3 — Diver roll . 18 Figure 4 — Diver pitch . 19 Figure 5 — Test orifice . 31 Figure 6 — Test arrangement for tensile force . 38 Figure 7 — Stoll Apertometer . 40 Figure 8 — Apertometer diagram (not to scale) . 41 Figure 9 — Example of an ignition test installation . 44 Figure 10 — Pressure cycle specification for oxygen pressure surge test . 44
high pressure pressure inside the gas cylinder(s) and between the gas cylinder(s) and any pressure reducer 3.3
medium pressure pressure between the pressure reducer and a gas control system Note 1 to entry: This is sometimes referred to as intermediate pressure. 3.4
low pressure pressure within the facepiece, breathing hoses, counterlung and absorbent canister, i.e. approximately ambient pressure 3.5
respiratory pressure differential pressure at the mouth relative to the no flow pressures at the end of inhalation and exhalation Note 1 to entry: See Figure 2. 3.6
rated working pressure maximum working pressure of the respective components 3.7
hydrostatic imbalance difference at end exhalation “no flow” between the pressure at the mouth and that at the reference point which could either be the suprasternal notch or the lung centroid of the diver
Note 1 to entry: See Figure 1 for the suprasternal notch or the lung centroid of the diver and Figure 2 for the difference at end exhalation. 3.8
displaced (tidal) volume volume of respirable gas displaced by the breathing simulator during one half cycle (inhalation or exhalation) measured in litre 3.9
breathing frequency setting of the breathing simulator measured in cycles per minute SIST EN 14143:2013
respiratory minute volume
RMV product of the tidal volume and breathing frequency measured in litre per minute 3.11
pressure volume diagram diagram generated during one breathing cycle by plotting the respiratory pressure against the displaced volume
Note 1 to entry: See Figure 2 3.12
work of breathing WOB work expended during one breathing cycle measured in Joule per litre which is proportional to the area bounded by the pressure volume diagram divided by the tidal volume Note 1 to entry: See Figure 2 3.13
breathing hose flexible low pressure hose(s) connecting the facepiece to either the counterlung(s) or absorbent canister 3.14
counterlung variable volume container for the diver to inhale from and exhale to 3.15
absorbent canister container filled with absorbent materials which will remove as a minimum at least carbon dioxide from the gas passing through them 3.16
dead space the volume of the cavity formed between the mouth and the inhalation and exhalation parts 3.17
body harness component of the re-breather to attach the apparatus to the body of the diver 3.18
facepiece device for connecting the apparatus to the wearer’s respiratory tract and isolating the respiratory tract from the environment Note 1 to entry: It may be a mouthpiece assembly, a half mask, a full face mask or a helmet. 3.19
oxygen and nitrogen gas mixture gas comprising a specified mixture of oxygen and nitrogen, capable of supporting human life under appropriate diving or hyperbaric conditions Note 1 to entry: This includes manufactured gas mixtures made up from combinations of pure oxygen and pure nitrogen, with or without compressed air. Note 2 to entry: This definition differs from that of Nitrox in EN 13949:2003 in that it covers all oxygen and nitrogen gas mixtures irrespective of oxygen content. SIST EN 14143:2013
trimix gas comprising a specified mixture of oxygen, helium and nitrogen, capable of supporting human life under appropriate diving or hyperbaric conditions Note 1 to entry: This includes manufactured gas mixtures made up from combinations of pure oxygen, pure helium and pure nitrogen, with or without compressed air. 3.21
heliox gas comprising a specified mixture of oxygen and helium, capable of supporting human life under appropriate diving or hyperbaric conditions 3.22
active warning device device that informs the diver of an adverse event without the diver having to take any action to receive the warning
Note 1 to entry: This information may be audible, visual or tactile. 3.23 emergency breathing system
system that allows the diver to breathe in the event of an apparatus failure 4 Minimum equipment The apparatus shall comprise at least the following components: a) breathing circuit; NOTE The breathing circuit can comprise a facepiece, breathing hose(s), counterlung(s), exhaust valve or absorbent canister. b) gas control or supply system; c) gas supply cylinder(s); d) safety device(s); e) body harness. It shall also be delivered with information supplied by the manufacturer. The apparatus may also include an emergency breathing system. 5 Requirements1) 5.1 Design The apparatus design shall be supported by the manufacturer through the provision of a failure mode effect and criticality analysis (FMECA) and following the methodology of EN 60812. The safety of the apparatus design shall be such that it has an acceptable risk as defined in Table 3. In order to quantify the acceptable risk of the use of a re-breather a risk analysis shall be conducted using the risk criteria defined in Table 1 to Table 3.
1) For a comparison between clauses of this European Standard concerning requirements and clauses concerning the respective tests, see Annex A. SIST EN 14143:2013
Probable Likely to occur from time to time during one year of use of one re-breather Occasional Likely to occur once or more during one year of use of one re-breather Remote Unlikely, but can exceptionally occur during one year of use of one re-breather Improbable Very unlikely to occur during one year of use of one re-breather Incredible Extremely unlikely that the event will occur at all, given the assumptions recorded about the domain and the re-breather
Table 2 — Consequence categories Severity category Definition Catastrophic Multiple deaths Critical Up to a single death; and/or multiple severe injuries or severe occupational illnesses Major A single severe injury or occupational illness (requiring more than 3 days off work); and/or multiple minor/marginal injuries or minor/marginal occupational illnesses Marginal A single injury (requiring more than 3 days off diving) Negligible At most a single minor injury or minor occupational illness not requiring time off work or diving
Table 3 — Risk criteria Severity Likelihood (per year) Frequenta
Probable Occasional Remote Improbable Incredible >0,1b >0,01
and ≤0,1 >0,001
and ≤0,01 >0,000 1 and ≤0,001 >0,000 01 and ≤0,000 1 ≤0,000 001 Catastrophic Unacceptable risk Unacceptable risk Unacceptable risk Unacceptable risk Unacceptable risk Acceptable risk Critical Unacceptable risk Unacceptable risk Unacceptable risk Unacceptable risk Acceptable risk Acceptable risk Major Unacceptable risk Unacceptable risk Unacceptable risk Acceptable risk Acceptable risk Acceptable risk Marginal Unacceptable risk Unacceptable risk Acceptable risk Acceptable risk Acceptable risk Acceptable risk Negligible Unacceptable risk Acceptable risk Acceptable risk Acceptable risk Acceptable risk Acceptable risk a Quantitative likelihood category. b Likelihood of dangerous failure of any safety critical function (in a single re-breather per year) . SIST EN 14143:2013
EN 144-1 where the preferred threads are M 18 x 1,5 or M 25 x 2. Cylinder(s) shall be designed for use at the maximum diving depth. SIST EN 14143:2013
...








Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.