General principles of cathodic protection in seawater

This European Standard covers the general principles of cathodic protection when applied in seawater, brackish waters and marine mud. It is intended to be an introduction, to provide a link between the theoretical aspects and the practical applications, and to constitute a support to the other European Standards devoted to cathodic protection of steel structures in seawater.
This European Standard specifies the criteria required for cathodic protection. It provides recommendations and information on reference electrodes, design considerations and prevention of the secondary effects of cathodic protection.
The practical applications of cathodic protection in seawater are covered by the following standards:
-   EN 12495, Cathodic protection for fixed steel offshore structures;
-   EN ISO 13174, Cathodic protection of harbour installations (ISO 13174);
-   EN 12496, Galvanic anodes for cathodic protection in seawater and saline mud;
-   EN 13173, Cathodic protection for steel offshore floating structures;
-   EN 16222, Cathodic protection of ship hulls;
-   EN 12474, Cathodic protection of submarine pipelines;
-   ISO 15589 2, Petroleum, petrochemical and natural gas industries - Cathodic protection of pipeline transportation systems - Part 2: Offshore pipelines.
For cathodic protection of steel reinforced concrete whether exposed to seawater or to the atmosphere, EN ISO 12696 applies.

Allgemeine Grundsätze des kathodischen Korrosionsschutzes in Meerwasser

Diese Europäische Norm legt allgemeine Grundsätze des kathodischen Korrosionsschutzes fest, wenn dieser in Meerwasser, Brackwasser und Meeresschlick angewendet wird. Sie dient als Einleitung, als Verbindung zwischen den theoretischen Aspekten und den praktischen Anwendungen sowie als Unterstützung zu anderen Europäischen Normen, die kathodischen Korrosionsschutz von Anlagen aus Stahl in Meerwasser behandeln.
Diese Europäische Norm legt die Kriterien, die für den kathodischen Korrosionsschutz erforderlich sind, fest. Sie gibt Empfehlungen und Informationen zu Referenzelektroden, Design-Überlegungen und Prävention der Nebenwirkungen des kathodischen Korrosionsschutzes.
Die praktischen Anwendungen des kathodischen Korrosionsschutzes in Meerwasser werden von den folgenden Normen abgedeckt:
EN 12495, Kathodischer Korrosionsschutz von ortsfesten Offshore-Anlagen aus Stahl
EN ISO 13174, Kathodischer Korrosionsschutz für Hafenbauten (ISO 13174)
EN 12496, Galvanische Anoden für den kathodischen Schutz in Seewasser und salzhaltigem Schlamm
EN 13173, Kathodischer Korrosionsschutz für schwimmende Offshore-Anlagen aus Stahl
EN 16222, Kathodischer Korrosionsschutz von Schiffen
EN 12474, Kathodischer Korrosionsschutz für unterseeische Rohrleitungen
ISO 15589-2, Petroleum, petrochemical and natural gas industries - Cathodic protection of pipeline transpor-tation systems - Part 2: Offshore pipelines
Für den kathodischen Korrosionsschutz von Meerwasser oder der Luft ausgesetztem Stahl in Beton gilt EN ISO 12696.

Principes généraux de la protection cathodique en eau de mer

La présente Norme européenne traite des principes généraux de la protection cathodique appliquée en eau de mer, en eaux saumâtres et dans les boues marines. Son rôle est de servir d'introduction et de lien entre les aspects théoriques et les applications pratiques et de constituer une base d'appui aux autres Normes européennes dédiées à la protection cathodique des ouvrages en acier en eau de mer.
La présente Norme européenne spécifie les critères requis pour la protection cathodique. Elle fournit des recommandations et des informations sur les électrodes de référence, les considérations pour la conception et sur la prévention des effets secondaires de la protection cathodique.
Les applications pratiques de la protection cathodique dans l'eau de mer sont couvertes par les normes suivantes :
-   EN 12495, Protection cathodique des structures en acier fixes en mer ;
-   EN ISO 13174, Protection cathodique des installations portuaires (ISO 13174) ;
-   EN 12496, Anodes galvaniques pour la protection cathodique dans l'eau de mer et les boues salines ;
-   EN 13173, Protection cathodique des structures en acier flottant en mer ;
-   EN 16222, Protection cathodique des coques de bateaux ;
-   EN 12474, Protection cathodique des canalisations sous-marines ;
-   ISO 15589-2, Industries du pétrole et du gaz naturel — Protection cathodique des systèmes de transport par conduites — Partie 2 : conduites en mer.
Pour la protection cathodique du béton armé, exposé à l'eau de mer ou à l'atmosphère, l'EN ISO 12696 s'applique.

Splošna načela za katodno zaščito v morski vodi

EN 12473 zajema splošna načela za katodno zaščito, ko se uporablja v morski vodi, polslanih vodah in slanem blatu. Namenjen je kot uvod, za določitev povezave med teoretskimi vidiki in praktičnimi vrstami uporabe ter za podporo drugim evropskim standardom, ki obravnavajo katodno zaščito jeklenih konstrukcij v morski vodi. Ta evropski standard določa merila, potrebna za katodno zaščito. Podaja priporočila in informacije o referenčnih elektrodah, projektiranju in preprečevanju sekundarnih učinkov katodne zaščite. Praktično uporabo katodne zaščite v morski vodi zajemajo ti standardi: – EN 12495, Katodna zaščita jeklenih konstrukcij, postavljenih v morju ali ob morju; – EN ISO 13174, Katodna zaščita za pristaniške napeljave (ISO 13174); – EN 12496, Galvanske anode za katodno zaščito v slani vodi in slanem blatu; – EN 13173, Katodna zaščita za plavajoče jeklene priobalne konstrukcije; – EN 16222, Katodna zaščita ladij; – EN 12474, Katodna zaščita podmorskih cevovodov; – ISO 15589-2, Petrokemična industrija ter industrija za predelavo nafte in zemeljskega plina – Katodna zaščita cevovodov – 2. del: Cevovodi na morju. Za katodno zaščito armiranega betona, ki je izpostavljen morski vodi ali atmosferi, velja standard EN ISO 12696.

General Information

Status
Published
Publication Date
11-Feb-2014
Withdrawal Date
30-Aug-2014
Current Stage
9060 - Closure of 2 Year Review Enquiry - Review Enquiry
Start Date
02-Sep-2025
Completion Date
02-Sep-2025

Relations

Standard
EN 12473:2014
English language
40 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (Sample)


2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.Allgemeine Grundsätze des kathodischen Korrosionsschutzes in MeerwasserPrincipes généraux de la protection cathodique en eau de merGeneral principles of cathodic protection in seawater47.020.01Splošni standardi v zvezi z ladjedelništvom in konstrukcijami na morjuGeneral standards related to shipbuilding and marine structures25.220.40Kovinske prevlekeMetallic coatingsICS:Ta slovenski standard je istoveten z:EN 12473:2014SIST EN 12473:2014en,fr,de01-julij-2014SIST EN 12473:2014SLOVENSKI
STANDARDSIST EN 12473:20001DGRPHãþD

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM
EN 12473
February 2014 ICS 47.020.01; 77.060 Supersedes EN 12473:2000English Version
General principles of cathodic protection in seawater
Principes généraux de la protection cathodique en eau de mer
Allgemeine Grundsätze des kathodischen Korrosionsschutzes in Meerwasser This European Standard was approved by CEN on 16 November 2013.
CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG
CEN-CENELEC Management Centre:
Avenue Marnix 17,
B-1000 Brussels © 2014 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members. Ref. No. EN 12473:2014 ESIST EN 12473:2014

Corrosion of carbon-manganese and low-alloy steels . 26 A.1 Nature of metallic corrosion . 26 A.2 Polarization . 27 Annex B (informative)
Principles of cathodic protection . 30 Annex C (informative)
Reference electrodes . 33 C.1 General . 33 C.2 Silver/silver chloride/seawater electrode . 33 C.3 The zinc/seawater electrode . 35 C.4 Verification of reference electrodes . 35 Annex D (informative)
Corrosion of metallic materials other than carbon-manganese and low-alloy steels typically subject to cathodic protection in seawater . 37 D.1 Stainless steels . 37 D.2 Nickel alloys . 37 D.3 Aluminium alloys . 37 D.4 Copper alloys . 38 Bibliography . 39
(ISO 13174); — EN 12496, Galvanic anodes for cathodic protection in seawater and saline mud; — EN 13173, Cathodic protection for steel offshore floating structures; — EN 16222, Cathodic protection of ship hulls; — EN 12474, Cathodic protection of submarine pipelines; — ISO 15589-2, Petroleum, petrochemical and natural gas industries — Cathodic protection of pipeline transportation systems — Part 2: Offshore pipelines. For cathodic protection of steel reinforced concrete whether exposed to seawater or to the atmosphere, EN ISO 12696 applies. 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. EN 50162, Protection against corrosion by stray current from direct current systems EN ISO 8044, Corrosion of metals and alloys — Basic terms and definitions (ISO 8044) 3 Terms, definitions, abbreviations and symbols For the purposes of this document, the terms and definitions given in EN ISO 8044 and the following apply. NOTE The definitions given below prevail on their versions in EN ISO 8044. 3.1 acidity presence of an excess of hydrogen ions over hydroxyl ions (pH < 7) 3.2 alkalinity presence of an excess of hydroxyl ions over hydrogen ions (pH > 7) SIST EN 12473:2014

Slow strain rate testing may also be applied to other specimen geometries, e.g. bend specimens. 3.28 specified minimum yield strength SMYS minimum yield strength prescribed by the specification under which steel components are manufactured, obtained through standard analysis and representing a probabilistic value Note 1 to entry: It is an indication of the minimum stress steel components may experience that will cause plastic (permanent) deformation (typically 0,2 %). 3.29 stray currents current flowing through paths other than the intended circuits 3.30 structure to electrolyte potential difference in potential between a structure and a specified reference electrode in contact with the electrolyte at a point sufficiently close to, but without actually touching the structure, to avoid error due to the voltage drop associated with any current flowing in the electrolyte 3.31 sulphate reducing bacteria SRB group of bacteria that are found in most soils and natural waters, but active only in conditions of near neutrality and absence of oxygen and that reduce sulphates in their environment, with the production of sulphides and accelerate the corrosion of structural materials SIST EN 12473:2014

Key 1 seawater 2 galvanic anode 3 anode attachment 4 protected structure in seawater Figure 1 — Representation of cathodic protection using a galvanic anode on a structure in the seawater SIST EN 12473:2014

Key 1 insulated cathode cable 2 power supply (dc) 3 insulated anode cable 4 seawater 5 impressed current anode 6 protected structure in seawater Figure 2 — Representation of impressed current cathodic protection using inert anode in seawater Table 1 — Comparison of galvanic and impressed current systems
Galvanic systems Impressed current systems Environment Use can be impracticable in soils or waters of high resistivity. Use is not restricted by resistivity of soils or waters Installation Simple to install. Needs careful design otherwise can be complicated. Power source Independent of any source of electric power. Cannot be wrongly connected electrically. External supply necessary. Care needs to be taken to avoid electrical connection in wrong direction. Anodes Bulk of anode material can restrict water flow and introduce turbulence and drag penalties. Usually lighter and few in number. Anodes can be designed to have minimum effect on water flow. Control Tendency for their current to be self adjusting. Controllable. Control usually automatic and can be continuous. Interaction They are less likely to affect any neighbouring structures. Effects on other structures situated near the anodes need to be assessed. Maintenance Generally not required. May be renewed in some circumstances. Equipment designed for long life but regular checks required on electrical equipment in service. Continual power required. Damage Anodes are robust and not very susceptible to mechanical damage. Where a system comprises a large number of anodes, the loss of a few anodes has little overall effect on the system. Connections have to be able to withstand any forces applied to the structure. Electrical insulation of cables is not necessary. Anodes lighter in construction and therefore less resistant to mechanical damage. Loss of anodes can be more critical to the effectiveness of a system. Complete electrical insulation of positive cables exposed to electrolyte is mandatory. SIST EN 12473:2014

In aerobic environment −0,80 −1,10 In anaerobic environment and/or steel temperature > 60°C −0,90 −1,10 High strength steels (SMYS higher than 550 N/mm2) −0,80 −0f83 to −0fs5 (see cootnote a) Aluminium alloys
(Al Mg and Al Mg Si) −0,80 (negative potential swing 0,10 V) −1,10 Austenitic steels or nickel base alloys containing chromium and/or molybdenum
- (PREN ≥ 40) −0,30 no limit if fully austenitic, if not see Footnote c - (PREN < 40) −0,50 (see Footnote b) no limit if fully austenitic,
if not see Footnote c Duplex or martensitic stainless steels −0,50 (see Footnote b) see Footnote c Copper alloys without aluminium with aluminium
−0f45 to −0f60 −0f45 to −0f60
no limit −1,10 Nickel - copper alloys −0,50 see Footnote d a The negative potential limit should be determined by testing of the high strength steel for specific metallurgical and mechanical conditions (see 9.3.2). b For most applications these potentials are adequate for the protection of crevices although more positive potentials may be considered if documented. c Depending on metallurgical structure, these alloys can be susceptible to Hydrogen Stress Cracking (HSC) and potentials that are too negative should be avoided (see 6.3.2 and 9.3.2). d High strength nickel copper alloys can be subject to HSC and potentials that result in significant hydrogen evolution should be avoided (see 9.3.2). SIST EN 12473:2014

Figure 3 — Corrosion, cathodic protection and over-polarization regimes of steel expressed as a function of electrode potential 6.3 Other metallic materials 6.3.1 General General information on corrosion of metallic materials other than carbon-manganese or low alloy steels typically subject to cathodic protection in seawater is given in Annex D. 6.3.2 Stainless steels 6.3.2.1 Role of microstructure Austenitic microstructure is compatible with the range of potentials experienced in cathodic protection. Ferritic and martensitic microstructures can suffer from hydrogen embrittlement at too negative potentials in the form of HSC (Hydrogen Stress Cracking) which is a non-ductile mode of failure caused by an interaction between stresses, cathodic protection and a susceptible material (see 9.3.2). 6.3.2.2 Austenitic stainless steels Austenitic stainless steels can be generally protected using a potential of −0,50 V (Ag/AgCl/seawater reference electrode) but for the more corrosion resistant stainless steels (PREN ≥ 40c a potential of −0f30 V (Ag/AgCl/seawater reference electrode) is accepted for most applications. However, in view of the wide range of austenitic stainless steels available, other potentials should only be used if they are substantiated by documented service performance or appropriate laboratory tests. Austenitic stainless steels are not vulnerable to HSC if over-polarized when their metallurgical structure is fully austenitic. However, limitations identical to duplex stainless steels (see 6.3.2.3) shall be observed when ferritic and/or martensitic phases are present, e.g. due to cold deformation or welding (see DNV RP B401 [17]). SIST EN 12473:2014
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.