Photovoltaic direct-driven appliance controllers - Part 1: General requirements

IEC 63349-1:2025 establishes control functions and operational performance requirements for photovoltaic direct-driven appliance (PVDDA) controllers.
PVDDA controllers are devices used for controlling power among power sources (such as a PV array, grid, energy storage, etc.) and appliances (such as an air-conditioner, refrigerator, water pump, etc.).
The requirements for PVDDA controllers are applicable to systems with voltages not higher than 1 500V DC or 1 000V AC. Safety and EMC requirements for the PVDDA controllers are under consideration and not covered by this document. Safety requirements for power converters connected to a PVDDA controller are listed as follows:
- for converter connected to PV array, IEC 62109‑1 and IEC 62109‑2 are applicable;
- for bi-directional converter connected to grid, IEC 62909‑1 and IEC 62909‑2 are applicable;
- for converter connected to energy storage, IEC 62477‑1 and IEC 62509 are applicable;
- for variable frequency drive, IEC 61800-5-1 is applicable.
Performance requirements for each individual power converter connected to a PVDDA controller refer to IEC 62093.

Contrôleur d’appareil à entraînement direct photovoltaïque - Partie 1: Exigences générales

l'IEC 63349-1:2025 établit les fonctions de commande et les exigences de performance d'utilisation des contrôleurs d'appareil à entraînement direct photovoltaïque (PVDDA, Photovoltaic Direct-Driven Appliance). Les contrôleurs des PVDDA sont des dispositifs utilisés pour le contrôle de la puissance entre des sources d'alimentation (telles qu'un groupe photovoltaïque, un réseau, un stockage d'énergie, etc.) et des appareils (tels qu'un climatiseur, un réfrigérateur, une pompe à eau, etc.).
Les exigences relatives aux contrôleurs PVDDA s'appliquent aux systèmes dont les tensions ne dépassent pas 1 500 V en courant continu ou 1 000 V en courant alternatif. Les exigences de sécurité et de CEM des contrôleurs PVDDA sont à l'étude et ne sont pas couvertes par le présent document. Les exigences de sécurité des convertisseurs de puissance connectés au contrôleur PVDDA sont traitées comme suit:
- pour un convertisseur connecté à un groupe photovoltaïque, l'IEC 62109‑1 et l'IEC 62109‑2 s'appliquent;
- pour un convertisseur bidirectionnel connecté au réseau, l'IEC 62909‑1 et l'IEC 62909‑2 s'appliquent;
- pour un convertisseur connecté à un stockage d'énergie, l'IEC 62909‑1 et l'IEC 62509 s'appliquent;
- pour un dispositif d'entraînement à fréquence variable, l'IEC 61800-5-1 s'applique.
Les exigences de performance pour chaque convertisseur de puissance connecté à un contrôleur PVDDA se réfèrent à l'IEC 62093.

General Information

Status
Published
Publication Date
03-Dec-2025
Drafting Committee
Current Stage
PPUB - Publication issued
Start Date
04-Dec-2025
Completion Date
12-Dec-2025
Ref Project
Standard
IEC 63349-1:2025 - Photovoltaic direct-driven appliance controllers - Part 1: General requirements Released:12/4/2025 Isbn:9782832708651
English language
31 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
IEC 63349-1:2025 - Contrôleur d’appareil à entraînement direct photovoltaïque - Partie 1: Exigences générales Released:12/4/2025 Isbn:9782832708651
French language
32 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
IEC 63349-1:2025 - Photovoltaic direct-driven appliance controllers - Part 1: General requirements Released:12/4/2025 Isbn:9782832708651
English and French language
63 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (Sample)


IEC 63349-1 ®
Edition 1.0 2025-12
INTERNATIONAL
STANDARD
Photovoltaic direct-driven appliance controllers -
Part 1: General requirements
ICS 27.160  ISBN 978-2-8327-0865-1

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or
by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either
IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright
or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local
IEC member National Committee for further information.

IEC Secretariat Tel.: +41 22 919 02 11
3, rue de Varembé info@iec.ch
CH-1211 Geneva 20 www.iec.ch
Switzerland
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigendum or an amendment might have been published.

IEC publications search - IEC Products & Services Portal - products.iec.ch
webstore.iec.ch/advsearchform Discover our powerful search engine and read freely all the
The advanced search enables to find IEC publications by a
publications previews, graphical symbols and the glossary.
variety of criteria (reference number, text, technical With a subscription you will always have access to up to date
committee, …). It also gives information on projects, content tailored to your needs.
replaced and withdrawn publications.

Electropedia - www.electropedia.org
IEC Just Published - webstore.iec.ch/justpublished The world's leading online dictionary on electrotechnology,
Stay up to date on all new IEC publications. Just Published containing more than 22 500 terminological entries in English
details all new publications released. Available online and and French, with equivalent terms in 25 additional languages.
once a month by email. Also known as the International Electrotechnical Vocabulary
(IEV) online.
IEC Customer Service Centre - webstore.iec.ch/csc
If you wish to give us your feedback on this publication or
need further assistance, please contact the Customer
Service Centre: sales@iec.ch.
CONTENTS
FOREWORD . 3
1 Scope . 5
2 Normative references . 5
3 Terms, definitions and abbreviated terms . 6
3.1 Terms and definitions . 6
3.2 Abbreviated terms. 7
4 Schematic drawing of PVDDA controller applications . 7
5 General requirements for PVDDA controller . 11
5.1 Operation conditions . 11
5.2 Controller ratings and markings . 11
5.2.1 Converter ratings and markings . 11
5.2.2 Controller input ratings . 11
5.2.3 Controller output ratings . 11
5.3 Control strategies . 11
5.3.1 General. 11
5.3.2 Optional strategies . 11
6 Performance requirements and test . 12
6.1 Test sequences . 12
6.2 Test configuration . 12
6.3 Test conditions and general evaluations . 13
6.3.1 Test conditions . 13
6.3.2 Visual inspection . 13
6.3.3 Insulation test . 13
6.4 Functionality test . 13
6.4.1 Purpose . 13
6.4.2 PS→A operation mode . 13
6.4.3 PG→A operation mode . 14
6.4.4 GS→A working mode . 14
6.4.5 PG→SA operation mode (optional) . 14
6.5 Dynamic switchover operation test . 16
6.5.1 Transition time from on-grid state to off-grid state . 16
6.5.2 Switching time between charging and discharging of energy storage . 18
6.5.3 Transient voltage of regulated DC appliance connection and transition
time . 20
6.5.4 Transient voltage of unregulated DC appliance connection and
transition time . 23
6.5.5 Grid power curtailment and load management . 26
7 Environmental testing. 28
7.1 Humidity freeze test . 28
7.2 Thermal cycling test . 28
7.3 Damp heat test . 28
7.4 Dry heat test . 28
7.5 Shipping vibration test . 28
8 High and low temperature operation test . 28
8.1 High temperature operation test . 28
8.1.1 Purpose . 28
8.1.2 Requirements . 28
8.1.3 Test procedure . 28
8.2 Low temperature start-up . 29
8.2.1 Purpose . 29
8.2.2 Requirements . 29
8.2.3 Test procedure . 29
9 Report . 29
Annex A (normative) Summary of test results . 30
Bibliography . 31

Figure 1 – Schematic drawing of PVDDA controller (including all options) . 7
Figure 2 – PVDDA controller used in equipment configuration PA . 8
Figure 3 – PVDDA controller used in equipment configuration PAG . 8
Figure 4 – PVDDA controller used in equipment configuration PAS . 9
Figure 5 – PVDDA controller used in equipment configuration PAGS . 9
Figure 6 – Test configuration of PVDDA controller . 12
Figure 7 – Transition time from on-grid state to off-grid state . 16
Figure 8 – Transition time of t - t curve . 20
1 0
Figure 9 – Transition time of t - t curve . 20
3 2
Figure 10 – Transition time of t - t curve . 23
5 4
Figure 11 – Transition time of t - t curve . 23
7 6
Table 1 – Requirement clauses for typical equipment configuration . 10
Table 2 – Operation test of typical operation modes . 15
Table 3 – Transition time from on-grid state to off-grid state test . 17
Table 4 – Switching time between charging and discharging test . 19
Table 5 – Regulated DC appliance switchover test . 22
Table 6 – Comparison between regulated DC appliance connection and unregulated
DC appliance connection . 24
Table 7 – Unregulated DC appliance switchover test . 25
Table 8 – Grid power curtailment and load management . 27
Table A.1 – Summary of test. 30

INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________
Photovoltaic direct-driven appliance controllers -
Part 1: General requirements
FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international
co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and
in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports,
Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their
preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with
may participate in this preparatory work. International, governmental and non-governmental organizations liaising
with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for
Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence between
any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a)
patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in
respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which
may be required to implement this document. However, implementers are cautioned that this may not represent
the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC
shall not be held responsible for identifying any or all such patent rights.
IEC 63349-1 has been prepared by IEC technical committee 82: Solar photovoltaic energy
systems. It is an International standard.
The text of this International Standard is based on the following documents:
Draft Report on voting
82/2501/FDIS 82/2533/RVD
Full information on the voting for its approval can be found in the report on voting indicated in
the above table.
The language used for the development of this International Standard is English.
This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in
accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available
at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are
described in greater detail at www.iec.ch/publications.
A list of all parts in the IEC 63349 series, published under the general title Photovoltaic direct-
driven appliance controllers, can be found on the IEC website.
The committee has decided that the contents of this document will remain unchanged until the
stability date indicated on the IEC website under webstore.iec.ch in the data related to the
specific document. At this date, the document will be
– reconfirmed,
– withdrawn, or
– revised.
1 Scope
This part of IEC 63349 establishes control functions and operational performance requirements
for photovoltaic direct-driven appliance (PVDDA) controllers.
PVDDA controllers are devices used for controlling power among power sources (such as a PV
array, grid, energy storage, etc.) and appliances (such as an air-conditioner, refrigerator, water
pump, etc.). Through a PVDDA controller, the power generated by a PV array is directly
supplied to appliances. The PVDDA controller also controls the appliances and has internal
communication. The PVDDA controller can have external communication with connected power
sources and appliances, but communication protocols are not covered in this document.
A PVDDA controller is built in or integrated with a control center, a maximum power point
tracking (MPPT) system, and one or multiple converters connected to appliances. The controller
can also include a bi-directional grid-connected AC/DC power converter, an energy storage
charger/discharger, etc. However, many of these devices have their own applicable standards,
therefore this document does not intend to create any new requirements for these individual
devices.
The requirements for PVDDA controllers are applicable to systems with voltages not higher
than 1 500V DC or 1 000V AC. Safety and EMC requirements for the PVDDA controllers are
under consideration and not covered by this document. Safety requirements for power
converters connected to a PVDDA controller are listed as follows:
a) for converter connected to PV array, IEC 62109-1 and IEC 62109-2 are applicable;
b) for bi-directional converter connected to grid, IEC 62909-1 and IEC 62909-2 are applicable;
c) for converter connected to energy storage, IEC 62477-1 and IEC 62509 are applicable;
d) for variable frequency drive, IEC 61800-5-1 is applicable.
Performance requirements for each individual power converter connected to a PVDDA
controller refer to IEC 62093.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies.
For undated references, the latest edition of the referenced document (including any
amendments) applies.
IEC TS 61836, Solar photovoltaic energy systems - Terms, definitions and symbols
IEC 62093:2022, Photovoltaic system power conversion equipment - Design qualification and
type approval
IEC TS 62786-1, Distributed energy resources connection with the grid - Part 1: General
requirements
IEC TS 62786-3, Distributed energy resources connection with the grid - Part 3: Additional
requirements for stationary battery energy storage system
IEC TS 63106-1, Simulators used for testing of photovoltaic power conversion equipment -
Recommendations - Part 1: AC power simulators
IEC TS 63106-2, Simulators used for testing of photovoltaic power conversion equipment -
Recommendations - Part 2: DC power simulators
3 Terms, definitions and abbreviated terms
3.1 Terms and definitions
For the purposes of this document, the terms and definitions given in IEC TS 61836 and the
following apply.
ISO and IEC maintain terminology databases for use in standardization at the following
addresses:
– IEC Electropedia: available at https://www.electropedia.org/
– ISO Online browsing platform: available at https://www.iso.org/obp
3.1.1
PV direct-driven appliance
PVDDA
appliance which directly uses electrical power generated by a PV array, and which can be
connected to the electrical grid, energy storage devices, or other power sources
3.1.2
PV direct-driven appliance controller
PVDDA controller
device of PVDDA used for power control among power sources and appliances, which is sold
as a single product
3.1.3
variable frequency drive
VFD
product or component that controls the rotational speed of a motor, typically an induction motor,
through a proportional relationship between drive output voltage and commanded output
frequency
[SOURCE: IEC 61800-7-202:2015, 3.1.52, modified – The notes have been removed.]
3.1.4
curtailment
reduction of the active power output of renewable energy generating units or power plants below
the maximum which could be fed into an electric power network in the prevailing conditions
[SOURCE: IEC 62934:2021, 3.7.5]
3.1.5
load management
reduction or disconnection of power usage from the grid, either automatically or manually
(usually as requested by the electric power network operator)
3.2 Abbreviated terms
GS→A grid and energy storage are supplying power to appliances
PA PV array (or PV module) and appliance
PAG PV array (or PV module), appliance and grid
PAGS PV array (or PV module), appliance, grid and energy storage
PAS PV array (or PV module), appliance and energy storage
PG→A PV array (or PV module) and grid are supplying power to appliances
PG→SA PV array (or PV module) and grid are supplying power to energy storage and
appliance
PS→A PV array (or PV module) and energy storage are supplying power to appliance
PVDDA PV direct-driven appliance
VFD variable frequency drive
4 Schematic drawing of PVDDA controller applications
The PVDDA controller is used in a system where the main power source is a PV array and the
load is appliances. It may be configured with connections for grid, energy storage, DC sources,
and other sources. The controller shall have a control port for connecting to external control
sources. The schematic drawing is shown in Figure 1.

NOTE Regulated DC appliance refers to an appliance which is connected to a DC-DC converter and is usually
sensitive to the voltage deviation; unregulated DC appliance refers to an appliance which is directly connected to the
DC bus and is insensitive to voltage deviation.
Figure 1 – Schematic drawing of PVDDA controller (including all options)
PVDDA controllers can be used in different equipment configurations. Typical configurations
are classified as follows (see definitions in IEC TS 63349-2):
Equipment configuration PA: equipment configuration includes PV array and appliances, see
Figure 2.
Figure 2 – PVDDA controller used in equipment configuration PA
Equipment configuration PAG: equipment configuration includes PV array, grid and appliances,
see Figure 3.
Figure 3 – PVDDA controller used in equipment configuration PAG
Equipment configuration PAS: equipment configuration includes PV array, energy storage and
appliances, see Figure 4.
Figure 4 – PVDDA controller used in equipment configuration PAS
Equipment configuration PAGS: equipment configuration includes PV array, grid, energy
storage and appliances, see Figure 5.

Figure 5 – PVDDA controller used in equipment configuration PAGS
Power converters connected to the PVDDA converter shall be controlled to cooperate to keep
the system working in a stable and reliable state. Controllers used in each equipment
configuration shall comply with the following requirements specified in Table 1.
Table 1 – Requirement clauses for typical equipment configuration
Equipment configuration PA (Figure 2) PAG (Figure 3) PAS (Figure 4) PAGS (Figure 5)
5.1 Operation conditions √ √ √ √
(5.2 Controller ratings and markings) √ √ √
5.2.1 Converter ratings and
markings
5.2.2 Controller input ratings √ √ √ √
5.2.3 Controller output ratings √ √ √ √
5.3 Control strategies √ √ √ √
(6.3 Test conditions and general √ √ √ √
evaluation)
6.3.2 Visual inspection
6.3.3 Insulation test √ √ √ √
(6.4 Functionality test)  √ √
6.4.2 PS→A operation mode
6.4.3 PG→A operation mode √ √
6.4.4 GS→A operation mode  √
6.4.5 PG→SA operation mode  √
(optional)
(6.5 Dynamic switchover operation √ √
test)
6.5.1 Transition time from on-grid
state to off-grid state
6.5.2 Switching time between √ √
charging and discharging of energy
storage
6.5.3 Transient voltage of regulated √ √ √
DC appliance connection and
(applied when (applied when (applied when
transition time
configured with configured with configured with
regulated DC regulated DC regulated DC
appliance) appliance) appliance)
6.5.4 Transient voltage of √ √ √
unregulated DC appliance and
(applied when (applied when (applied when
transition time
configured with configured with configured with
unregulated DC unregulated DC unregulated DC
appliance) appliance) appliance)
6.5.5 Grid power curtailment and √ √ √ √
load management
(7 Storage environmental testing) √ √ √ √
7.1 Humidity freeze test
7.2 Thermal cycling test √ √ √ √
7.3 Damp heat test √ √ √ √
7.4 Dry heat test √ √ √ √
7.5 Shipping vibration test √ √ √ √
(8 High and low temperature √ √ √ √
operation test)
8.1 High temperature operation test
8.2 Low temperature start-up √ √ √ √

5 General requirements for PVDDA controller
5.1 Operation conditions
As a minimum, the controller shall work in the following ambient environmental conditions:
a) For controller installed in outdoor environment: temperature from -20 °C to 50 °C, for
controller installed in indoor environment: temperature from 0 °C to 40 °C;
b) relative humidity between 0 % to 95 %, no condensation;
c) altitude above sea level: not more than 2 000 m.
Manufacturers can specify their own conditions beyond the above ranges.
5.2 Controller ratings and markings
5.2.1 Converter ratings and markings
The individual converter that is not built in but integrated into the PVDDA controller shall
conform to its applicable standard. The converter shall be marked with the ratings of each port.
The ratings shall be plainly and permanently marked on the converter, in a location that is
clearly visible after installation.
5.2.2 Controller input ratings
All input ports shall be marked with their specifications: voltage, current, frequency including
tolerances and range.
5.2.3 Controller output ratings
All output ports shall be marked with their specifications: voltage, current, frequency including
tolerances and range.
5.3 Control strategies
5.3.1 General
The PVDDA controller shall be able to conduct the optional strategies listed in 5.3.2 to set
operational priorities on the basis of compliance with IEC TS 62786-1 and IEC TS 62786-3 or
local grid codes. The manufacturers of PVDDA controllers shall declare which grid codes the
controller complies with.
5.3.2 Optional strategies
a) Grid power curtailment: The key point of this control strategy is to respond to a grid request
to limit power supplied to the grid.
b) Load management: The key point of this control strategy is to respond to a grid request to
limit power consumption from the grid.
c) Appliance performance priority: The key point of this control strategy is to guarantee the
appliance operates as desired. (e.g. air conditioning has the lowest temperature fluctuation
from the set point for the best comfortable level).
d) System economy priority: The key point of this control strategy is to have the
...


IEC 63349-1 ®
Edition 1.0 2025-12
NORME
INTERNATIONALE
Contrôleur d’appareil à entraînement direct photovoltaïque -
Partie 1: Exigences générales
ICS 27.160  ISBN 978-2-8327-0865-1

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni
utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et
les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des
questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez
les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Secretariat Tel.: +41 22 919 02 11
3, rue de Varembé info@iec.ch
CH-1211 Geneva 20 www.iec.ch
Switzerland
A propos de l'IEC
La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des
Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC
Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l’édition la
plus récente, un corrigendum ou amendement peut avoir été publié.

Recherche de publications IEC -  IEC Products & Services Portal - products.iec.ch
webstore.iec.ch/advsearchform Découvrez notre puissant moteur de recherche et consultez
La recherche avancée permet de trouver des publications gratuitement tous les aperçus des publications, symboles
IEC en utilisant différents critères (numéro de référence, graphiques et le glossaire. Avec un abonnement, vous aurez
texte, comité d’études, …). Elle donne aussi des toujours accès à un contenu à jour adapté à vos besoins.
informations sur les projets et les publications remplacées
ou retirées. Electropedia - www.electropedia.org
Le premier dictionnaire d'électrotechnologie en ligne au
IEC Just Published - webstore.iec.ch/justpublished monde, avec plus de 22 500 articles terminologiques en
Restez informé sur les nouvelles publications IEC. Just anglais et en français, ainsi que les termes équivalents
Published détaille les nouvelles publications parues. dans 25 langues additionnelles. Egalement appelé
Disponible en ligne et une fois par mois par email. Vocabulaire Electrotechnique International (IEV) en ligne.

Service Clients - webstore.iec.ch/csc
Si vous désirez nous donner des commentaires sur cette
publication ou si vous avez des questions contactez-
nous: sales@iec.ch.
SOMMAIRE
AVANT-PROPOS . 3
1 Domaine d'application . 5
2 Références normatives . 5
3 Termes, définitions et abréviations . 6
3.1 Termes et définitions. 6
3.2 Abréviations . 7
4 Schéma des applications du contrôleur PVDDA . 7
5 Exigences générales pour le contrôleur PVDDA . 11
5.1 Conditions de fonctionnement . 11
5.2 Caractéristiques assignées et marquages du contrôleur . 12
5.2.1 Caractéristiques assignées et marquages du convertisseur . 12
5.2.2 Caractéristiques assignées d'entrée du contrôleur . 12
5.2.3 Caractéristiques assignées de sortie du contrôleur . 12
5.3 Stratégies de commande . 12
5.3.1 Généralités . 12
5.3.2 Stratégies facultatives . 12
6 Exigences de performances et essai . 12
6.1 Séquences d'essais . 12
6.2 Configuration d'essai . 12
6.3 Conditions d'essai et évaluation générale . 13
6.3.1 Conditions d'essai . 13
6.3.2 Examen visuel . 13
6.3.3 Essai d'isolation . 14
6.4 Essai de fonctionnalité . 14
6.4.1 Objet . 14
6.4.2 Mode de fonctionnement PS→A . 14
6.4.3 Mode de fonctionnement PG→A . 14
6.4.4 Mode de fonctionnement GS→A . 15
6.4.5 Mode de fonctionnement PG→SA (facultatif) . 15
6.5 Essai de commutation dynamique . 17
6.5.1 Temps de transition entre l'état en réseau et l'état hors réseau . 17
6.5.2 Temps de commutation entre la charge et la décharge du stockage
d'énergie . 19
6.5.3 Tension transitoire de la connexion de l'appareil à courant continu
régulé et temps de transition . 21
6.5.4 Tension transitoire de la connexion de l'appareil à courant continu non
régulé et temps de transition . 24
6.5.5 Restriction de la puissance du réseau et gestion de la charge . 27
7 Essais d'environnement. 28
7.1 Essai d'humidité-gel . 28
7.2 Essai de cycle thermique . 28
7.3 Essai de résistance à la chaleur humide . 28
7.4 Essai de résistance à la chaleur sèche . 28
7.5 Essai de vibrations dues à l'expédition . 28
8 Essai de fonctionnement à température élevée et faible . 28
8.1 Essai de fonctionnement à température élevée . 28
8.1.1 Objet . 28
8.1.2 Exigences . 28
8.1.3 Procédure d'essai . 28
8.2 Démarrage à faible température . 29
8.2.1 Objet . 29
8.2.2 Exigences . 29
8.2.3 Procédure d'essai . 29
9 Rapport . 29
Annexe A (normative) Récapitulatif des résultats d'essai . 30
Bibliographie . 32

Figure 1 – Schéma du contrôleur PVDDA (y compris toutes les options) . 8
Figure 2 – Contrôleur PVDDA utilisé dans la configuration de l'équipement PA . 8
Figure 3 – Contrôleur PVDDA utilisé dans la configuration de l'équipement PAG. 9
Figure 4 – Contrôleur PVDDA utilisé dans la configuration de l'équipement PAS . 9
Figure 5 – Contrôleur PVDDA utilisé dans la configuration de l'équipement PAGS . 10
Figure 6 – Configuration d'essai du contrôleur PVDDA . 13
Figure 7 – Temps de transition entre l'état en réseau et l'état hors réseau . 17
Figure 8 – temps de transition de la courbe t - t . 21
1 0
Figure 9 – Temps de transition de la courbe t - t . 22
3 2
Figure 10 – Temps de transition de la courbe t - t . 24
5 4
Figure 11 – temps de transition de la courbe t - t . 25
7 6
Tableau 1 – Articles d'exigences pour la configuration type de l'équipement . 10
Tableau 2 – Essai de fonctionnement des modes de fonctionnement types. 16
Tableau 3 – Essai du temps de transition entre l'état en réseau et l'état hors réseau . 18
Tableau 4 – Essai du temps de commutation entre la charge et la décharge . 20
Tableau 5 – Essai de commutation d'un appareil à courant continu régulé . 23
Tableau 6 – Comparaison entre la connexion d'un appareil à courant continu régulé et
la connexion d'un appareil à courant continu non régulé . 25
Tableau 7 – Essai de commutation d'un appareil à courant continu non régulé . 26
Tableau 8 – Restriction de la puissance du réseau et gestion de la charge . 28
Tableau A.1 – Récapitulatif des essais . 30

COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE
____________
Contrôleur d'appareil à entraînement direct photovoltaïque -
Partie 1: Exigences générales
AVANT-PROPOS
1) La Commission Électrotechnique Internationale (IEC) est une organisation mondiale de normalisation composée
de l'ensemble des comités électrotechniques nationaux (Comités nationaux de l'IEC). L'IEC a pour objet de
favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de
l'électricité et de l'électronique. À cet effet, l'IEC – entre autres activités – publie des Normes internationales,
des Spécifications techniques, des Rapports techniques, des Spécifications accessibles au public (PAS) et des
Guides (ci-après dénommés "Publication(s) de l'IEC"). Leur élaboration est confiée à des comités d'études, aux
travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations
internationales, gouvernementales et non gouvernementales, en liaison avec l'IEC, participent également aux
travaux. L'IEC collabore étroitement avec l'Organisation Internationale de Normalisation (ISO), selon des
conditions fixées par accord entre les deux organisations.
2) Les décisions ou accords officiels de l'IEC concernant les questions techniques représentent, dans la mesure du
possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de l'IEC intéressés
sont représentés dans chaque comité d'études.
3) Les Publications de l'IEC se présentent sous la forme de recommandations internationales et sont agréées
comme telles par les Comités nationaux de l'IEC. Tous les efforts raisonnables sont entrepris afin que l'IEC
s'assure de l'exactitude du contenu technique de ses publications; l'IEC ne peut pas être tenue responsable de
l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.
4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de l'IEC s'engagent, dans toute la
mesure possible, à appliquer de façon transparente les Publications de l'IEC dans leurs publications nationales
et régionales. Toutes divergences entre toutes Publications de l'IEC et toutes publications nationales ou
régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.
5) L'IEC elle-même ne fournit aucune attestation de conformité. Des organismes de certification indépendants
fournissent des services d'évaluation de conformité et, dans certains secteurs, accèdent aux marques de
conformité de l'IEC. L'IEC n'est responsable d'aucun des services effectués par les organismes de certification
indépendants.
6) Tous les utilisateurs doivent s'assurer qu'ils sont en possession de la dernière édition de cette publication.
7) Aucune responsabilité ne doit être imputée à l'IEC, à ses administrateurs, employés, auxiliaires ou mandataires,
y compris ses experts particuliers et les membres de ses comités d'études et des Comités nationaux de l'IEC,
pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre dommage de quelque
nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice) et les dépenses
découlant de la publication ou de l'utilisation de cette Publication de l'IEC ou de toute autre Publication de l'IEC,
ou au crédit qui lui est accordé.
8) L'attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications
référencées est obligatoire pour une application correcte de la présente publication.
9) L'IEC attire l'attention sur le fait que la mise en application du présent document peut entraîner l'utilisation d'un
ou de plusieurs brevets. L'IEC ne prend pas position quant à la preuve, à la validité et à l'applicabilité de tout
droit de brevet revendiqué à cet égard. À la date de publication du présent document, l'IEC n'avait pas reçu
notification qu'un ou plusieurs brevets pouvaient être nécessaires à sa mise en application. Toutefois, il y a lieu
d'avertir les responsables de la mise en application du présent document que des informations plus récentes
sont susceptibles de figurer dans la base de données de brevets, disponible à l'adresse https://patents.iec.ch.
L'IEC ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de brevets.
L'IEC 63349-1 a été établie par le comité d'études 82 de l'IEC: Systèmes de conversion
photovoltaïque de l'énergie solaire. Il s'agit d'une Norme internationale.
Le texte de cette Norme internationale est issu des documents suivants:
Projet Rapport de vote
82/2501/FDIS 82/2533/RVD
Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant
abouti à son approbation.
La langue employée pour l'élaboration de cette Norme internationale est l'anglais.
Ce document a été rédigé selon les Directives ISO/IEC, Partie 2, il a été développé selon les
Directives ISO/IEC, Partie 1 et les Directives ISO/IEC, Supplément IEC, disponibles sous
www.iec.ch/members_experts/refdocs. Les principaux types de documents développés par
l'IEC sont décrits plus en détail sous www.iec.ch/publications.
Une liste de toutes les parties de la série IEC 63349, publiées sous le titre général Contrôleur
d'appareil à entraînement direct photovoltaïque, se trouve sur le site web de l'IEC.
Le comité a décidé que le contenu de ce document ne sera pas modifié avant la date de stabilité
indiquée sur le site web de l'IEC sous webstore.iec.ch dans les données relatives au document
recherché. À cette date, le document sera
– reconduit,
– supprimé, ou
– révisé.
1 Domaine d'application
La présente partie de l'IEC 63349 établit les fonctions de commande et les exigences de
performance d'utilisation des contrôleurs d'appareil à entraînement direct photovoltaïque
(PVDDA, Photovoltaic Direct-Driven Appliance).
Les contrôleurs des PVDDA sont des dispositifs utilisés pour le contrôle de la puissance entre
des sources d'alimentation (telles qu'un groupe photovoltaïque, un réseau, un stockage
d'énergie, etc.) et des appareils (tels qu'un climatiseur, un réfrigérateur, une pompe à eau, etc.).
Par l'intermédiaire d'un contrôleur PVDDA, la puissance générée par un groupe PV est
directement fournie aux appareils. Le contrôleur PVDDA commande également les appareils et
dispose d'une communication interne. Le contrôleur PVDDA peut disposer d'une
communication externe avec des sources d'alimentation et des appareils reliés, mais le présent
document ne couvre pas les protocoles de communication.
Un contrôleur PVDDA est incorporé ou intégré à un centre de commande, à un système de
conversion optimale d'énergie (MPPT, Maximum Power Point Tracking) et à un ou plusieurs
convertisseurs connectés aux appareils. Le contrôleur peut également inclure un convertisseur
de puissance alternatif/continu bidirectionnel connecté au réseau, un chargeur/déchargeur de
stockage d'énergie, etc. Toutefois, bon nombre de ces dispositifs ont leurs propres normes qui
leur sont applicables; par conséquent, le présent document n'a pas pour objet de créer de
nouvelles exigences pour ces différents dispositifs.
Les exigences relatives aux contrôleurs PVDDA s'appliquent aux systèmes dont les tensions
ne dépassent pas 1 500 V en courant continu ou 1 000 V en courant alternatif. Les exigences
de sécurité et de CEM des contrôleurs PVDDA sont à l'étude et ne sont pas couvertes par le
présent document. Les exigences de sécurité des convertisseurs de puissance connectés au
contrôleur PVDDA sont traitées comme suit:
a) pour un convertisseur connecté à un groupe photovoltaïque, l'IEC 62109-1 et l'IEC 62109-2
s'appliquent;
b) pour un convertisseur bidirectionnel connecté au réseau, l'IEC 62909-1 et l'IEC 62909-2
s'appliquent;
c) pour un convertisseur connecté à un stockage d'énergie, l'IEC 62909-1 et l'IEC 62509
s'appliquent;
d) pour un dispositif d'entraînement à fréquence variable, l'IEC 61800-5-1 s'applique.
Les exigences de performance pour chaque convertisseur de puissance connecté à un
contrôleur PVDDA se réfèrent à l'IEC 62093.
2 Références normatives
Les documents suivants sont cités dans le texte de sorte qu'ils constituent, pour tout ou partie
de leur contenu, des exigences du présent document. Pour les références datées, seule
l'édition citée s'applique. Pour les références non datées, la dernière édition du document de
référence s'applique (y compris les éventuels amendements).
IEC TS 61836, Solar photovoltaic energy systems - Terms, definitions and symbols (disponible
en anglais seulement)
IEC 62093:2022, Matériel de conversion de puissance des systèmes photovoltaïques -
Qualification de la conception et approbation de type
IEC TS 62786-1, Distributed energy resources connection with the grid - Part 1: General
requirements (disponible en anglais seulement)
IEC TS 62786-3, Distributed energy resources connection with the grid - Part 3: Additional
requirements for stationary battery energy storage system (disponible en anglais seulement)
IEC TS 63106-1, Simulators used for testing of photovoltaic power conversion equipment -
Recommendations - Part 1: AC power simulators (disponible en anglais seulement)
IEC TS 63106-2, Simulators used for testing of photovoltaic power conversion equipment -
Recommendations - Part 2: DC power simulators (disponible en anglais seulement)
3 Termes, définitions et abréviations
3.1 Termes et définitions
Pour les besoins du présent document, les termes et les définitions de l'IEC TS 61836 ainsi
que les suivants s'appliquent.
L'ISO et l'IEC tiennent à jour des bases de données terminologiques destinées à être utilisées
en normalisation, consultables aux adresses suivantes:
– IEC Electropedia: disponible à l'adresse https://www.electropedia.org/
– ISO Online browsing platform: disponible à l'adresse https://www.iso.org/obp
3.1.1
appareil à entraînement direct photovoltaïque
PVDDA
appareil qui utilise directement l'énergie électrique produite par un groupe PV, et qui peut être
connecté au réseau électrique, aux dispositifs de stockage d'énergie ou à d'autres sources
d'alimentation
Note 1 à l'article: L'abréviation "PVDDA" est dérivée du terme anglais développé correspondant "PV direct-driven
appliance".
3.1.2
contrôleur d'appareil à entraînement direct photovoltaïque
contrôleur PVDDA
dispositif de PVDDA utilisé pour la régulation de puissance entre les sources d'alimentation et
les appareils, qui est vendu comme un seul produit
3.1.3
dispositif d'entraînement à fréquence variable
VFD
produit ou composant qui régule le régime d'un moteur, généralement un moteur à induction,
au moyen d'une relation proportionnelle entre la tension de sortie du dispositif d'entraînement
et la fréquence de sortie commandée
Note 1 à l'article: L'abréviation "VFD" est dérivée du terme anglais développé correspondant "variable frequency
drive".
[SOURCE: IEC 61800-7-202:2015, 3.1.52, modifié – Les notes ont été supprimées.]
3.1.4
restriction
réduction de la puissance active produite par les unités de production ou les centrales d'énergie
renouvelable au-dessous de la quantité maximale qui pourrait être injectée dans un réseau
d'énergie électrique dans les conditions existantes
[SOURCE: IEC 62934:2021, 3.7.5]
3.1.5
gestion de la charge
réduction ou déconnexion de la consommation d'énergie du réseau, soit automatiquement soit
manuellement (généralement à la demande de l'opérateur du réseau électrique)
3.2 Abréviations
GS→A (Grid/Storage→Appliances) le réseau et le stockage d'énergie alimentent les
appareils
PA (PV/Appliance) groupe PV (ou module PV) et appareil
PAG (PV/Appliance/Grid) groupe PV (ou module PV), appareil et réseau
PAGS (PV/Appliance/Grid/Storage) groupe PV (ou module PV), appareil, réseau et
stockage d'énergie
PAS (PV/Appliance/Storage) groupe PV (ou module PV), appareil et stockage
d'énergie
PG→A (PV/Grid→Appliances) le groupe PV (ou module PV) et le réseau
alimentent les appareils
PG→SA (PV/Grid→Storage/Appliance) le groupe PV (ou module PV) et le réseau
alimentent le stockage d'énergie et l'appareil
PS→A (PV/Storage→Appliance) le groupe PV (ou module PV) et le stockage
d'énergie alimentent l'appareil
PVDDA (PV Direct-Driven Appliance) appareil à entraînement direct photovoltaïque
VFD (Variable Frequency Drive) dispositif d'entraînement à fréquence variable

4 Schéma des applications du contrôleur PVDDA
Le contrôleur PVDDA est utilisé dans un système dont la principale source d'alimentation est
un groupe PV et dont la charge est des appareils. Il peut être configuré avec des connexions
pour un réseau, un stockage d'énergie, des sources de courant continu et d'autres sources. Le
contrôleur doit disposer d'un accès de commande pour la connexion à des sources de
commande externes. Le schéma est représenté à la Figure 1.
NOTE L'appareil à courant continu régulé est un appareil connecté à un convertisseur continu-continu et
généralement sensible à l'écart de tension; un appareil à courant continu non régulé est un appareil directement
connecté au bus à courant continu et insensible à l'écart de tension.
Figure 1 – Schéma du contrôleur PVDDA (y compris toutes les options)
Les contrôleurs PVDDA peuvent être utilisés dans différentes configurations d'équipements.
Les configurations types sont classées comme suit (voir les définitions dans l'IEC TS 63349-2):
Configuration de l'équipement PA: la configuration de l'équipement comprend le groupe
photovoltaïque et les appareils, voir la Figure 2.

Figure 2 – Contrôleur PVDDA utilisé dans la configuration de l'équipement PA
Configuration de l'équipement PAG: la configuration de l'équipement comprend le groupe
photovoltaïque, le réseau et les appareils, voir la Figure 3.
Figure 3 – Contrôleur PVDDA utilisé dans la configuration de l'équipement PAG
Configuration de l'équipement PAS: la configuration de l'équipement comprend le groupe
photovoltaïque, le stockage d'énergie et les appareils, voir la Figure 4.

Figure 4 – Contrôleur PVDDA utilisé dans la configuration de l'équipement PAS
Configuration de l'équipement PAGS: la configuration de l'équipement comprend le groupe
photovoltaïque, le réseau, le stockage d'énergie et les appareils, voir la Figure 5.

Figure 5 – Contrôleur PVDDA utilisé dans la configuration de l'équipement PAGS
Les convertisseurs de puissance connectés au convertisseur PVDDA doivent être contrôlés
pour coopérer afin de maintenir le système dans un état stable et fiable. Les contrôleurs utilisés
dans chaque configuration de l'équipement doivent être conformes aux exigences suivantes
spécifiées dans le Tableau 1.
Tableau 1 – Articles d'exigences pour la configuration type de l'équipement
Configuration de l'équipement PA (Figure 2) PAG (Figure 3) PAS (Figure 4) PAGS (Figure 5)
5.1 Conditions de fonctionnement √ √ √ √
(5.2 Caractéristiques assignées et √ √ √
marquages du contrôleur)
5.2.1 Caractéristiques assignées et
marquages du convertisseur
5.2.2 Caractéristiques assignées √ √ √ √
d'entrée du contrôleur
5.2.3 Caractéristiques assignées de √ √ √ √
sortie du contrôleur
5.3 Stratégies de commande √ √ √ √
(6.3 Conditions d'essai et évaluation
√ √ √ √
générale)
6.3.2 Examen visuel
6.3.3 Essai d'isolation √ √ √ √
(6.4 Essai de fonctionnalité)  √ √
6.4.2 Mode de
fonctionnement PS→A
6.4.3 Mode de √ √
fonctionnement PG→A
Configuration de l'équipement PA (Figure 2) PAG (Figure 3) PAS (Figure 4) PAGS (Figure 5)
6.4.4 Mode de  √
fonctionnement GS→A
6.4.5 Mode de fonctionnement  √
PG→SA (facultatif)
(6.5 Essai de commutation √ √
dynamique)
6.5.1 Temps de transition entre l'état
en réseau et l'état hors réseau
6.5.2 Temps de commutation entre √ √
la charge et la décharge du
stockage d'énergie
6.5.3 Tension transitoire de la √ √ √
connexion de l'appareil à courant
(appliquée en (appliquée en (appliquée en
continu régulé et temps de transition
cas de cas de cas de
configuration configuration configuration
avec un appareil avec un appareil avec un appareil
à courant à courant à courant
continu régulé) continu régulé) continu régulé)
6.5.4 Tension transitoire de √ √ √
l'appareil à courant continu non
(appliquée en (appliquée en (appliquée en
régulé et temps de transition
cas de cas de cas de
configuration configuration configuration
avec un appareil avec un appareil avec un appareil
à courant à courant à courant
continu non continu non continu non
régulé) régulé) régulé)
6.5.5 Restriction de la puissance du √ √ √ √
réseau et gestion de la charge
(7 Essais d'environnement de √ √ √ √
stockage)
7.1 Essai d'humidité-gel
7.2 Essai de cycle thermique √ √ √ √
7.3 Essai de résistance à la chaleur √ √ √ √
humide
7.4 Essai de résistance à la chaleur √ √ √ √
sèche
7.5 Essai de vibrations dues à √ √ √ √
l'expédition
(8 Essai de fonctionnement à √ √ √ √
température élevée et à faible
température)
8.1 Essai de fonctionnement à
température élevée
8.2 Démarrage à faible température √ √ √ √

5 Exigences générales pour le contrôleur PVDDA
5.1 Conditions de fonctionnement
Le contrôleur doit au moins fonctionner dans les conditions d'environnement ambiant suivantes:
a) pour un contrôleur installé dans un environnement extérieur: température de -20 °C à 50 °C;
pour un contrôleur installé dans un environnement intérieur: température de 0 °C à 40 °C;
b) humidité relative comprise entre 0 % et 95 %, pas de condensation;
c) altitude au-dessus du niveau de la mer ne dépassant pas 2 000 m.
Les fabricants peuvent spécifier leurs propres conditions en dehors des plages ci-dessus.
5.2 Caractéristiques assignées et marquages du contrôleur
5.2.1 Caractéristiques assignées et marquages du convertisseur
Un convertisseur seul qui n'est pas incorporé, mais intégré au contrôleur PVDDA doit être
conforme à la norme qui lui est applicable. Le convertisseur doit porter le marquage des
caractéristiques assignées de chaque accès. Les caractéristiques assignées doivent être
marquées de façon claire et permanente sur le convertisseur, à un emplacement clairement
visible après l'installation.
5.2.2 Caractéristiques assignées d'entrée du contrôleur
Tous les accès d'entrée doivent porter le marquage de leurs spécifications: tension, courant,
fréquence, y compris les tolérances et la plage.
5.2.3 Caractéristiques assignées de sortie du contrôleur
Tous les accès de sortie doivent porter le marquage de leurs spécifications: tension, courant,
fréquence, y compris les tolérances et la plage.
5.3 Stratégies de commande
5.3.1 Généralités
Le contrôleur PVDDA doit être en mesure de mener les stratégies facultatives énumérées au
5.3.2 pour fixer les priorités opérationnelles en fonction de la conformité à l'IEC TS 62786-1 et
l'IEC TS 62786-3 ou aux codes de réseau locaux. Les fabricants de contrôleurs PVDDA doivent
déclarer les codes de réseau auxquels le contrôleur est conforme.
5.3.2 Stratégies facultatives
a) Restriction de la puissance du réseau: Le point essentiel de cette stratégie de commande
est de répondre à une demande du réseau de limiter la puissance fournie au réseau.
b) Gestion de la charge Le point essentiel de cette stratégie de commande est de répondre à
une demande du réseau de limiter la consommation de puissance tirée du réseau.
c) Priorité aux performances de l'appareil: Le point essentiel de cette stratégie de commande
est d'assurer le fonctionnement souhaité de l'appareil (par exemple, la climatisation a la
plus faible fluctuation de température par rapport au point de consigne pour assurer le
meilleur confort possible).
d) Priorité à l'économie du système: Le point essentiel de cette stratégie de commande est
d'obtenir le coût d'exploitation du système le plus bas possible. Le prix de l'électricité fournie
au réseau ou consommée à partir du réseau peut varier en fonction de l'heure de la journée,
de la puissance active ou réactive, etc. Cette stratégie de commande peut sacrifier le niveau
de confort des appareils (par exemple, la climatisation a une fluctuation de température plus
importante par rapport au point de consigne).
6 Exigences de performances et essai
6.1 Séquences d'essais
Tous les essais du 6.3 à l'Article 8 peuvent être effectués sur un ou plusieurs échantillons (afin
de réduire la durée totale du programme d'essai). Il n'est pas exigé d'effectuer les essais du
6.3 à l'Article 8 dans un ordre particulier.
6.2 Configuration d'essai
...


IEC 63349-1 ®
Edition 1.0 2025-12
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
Photovoltaic direct-driven appliance controllers -
Part 1: General requirements
Contrôleur d’appareil à entraînement direct photovoltaïque -
Partie 1: Exigences générales
ICS 27.160 ISBN 978-2-8327-0865-1
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or
by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either
IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright
or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local
IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni
utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et
les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des
questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez
les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Secretariat Tel.: +41 22 919 02 11
3, rue de Varembé info@iec.ch
CH-1211 Geneva 20 www.iec.ch
Switzerland
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigendum or an amendment might have been published.

IEC publications search - IEC Products & Services Portal - products.iec.ch
webstore.iec.ch/advsearchform Discover our powerful search engine and read freely all the
The advanced search enables to find IEC publications by a publications previews, graphical symbols and the glossary.
variety of criteria (reference number, text, technical With a subscription you will always have access to up to date
committee, …). It also gives information on projects, content tailored to your needs.
replaced and withdrawn publications.
Electropedia - www.electropedia.org
IEC Just Published - webstore.iec.ch/justpublished The world's leading online dictionary on electrotechnology,
Stay up to date on all new IEC publications. Just Published containing more than 22 500 terminological entries in English
details all new publications released. Available online and and French, with equivalent terms in 25 additional languages.
once a month by email. Also known as the International Electrotechnical Vocabulary
(IEV) online.
IEC Customer Service Centre - webstore.iec.ch/csc
If you wish to give us your feedback on this publication or
need further assistance, please contact the Customer
Service Centre: sales@iec.ch.
A propos de l'IEC
La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des
Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC
Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l’édition la
plus récente, un corrigendum ou amendement peut avoir été publié.

Recherche de publications IEC -  IEC Products & Services Portal - products.iec.ch
webstore.iec.ch/advsearchform Découvrez notre puissant moteur de recherche et consultez
La recherche avancée permet de trouver des publications gratuitement tous les aperçus des publications, symboles
IEC en utilisant différents critères (numéro de référence, graphiques et le glossaire. Avec un abonnement, vous aurez
texte, comité d’études, …). Elle donne aussi des toujours accès à un contenu à jour adapté à vos besoins.
informations sur les projets et les publications remplacées
ou retirées. Electropedia - www.electropedia.org

Le premier dictionnaire d'électrotechnologie en ligne au
IEC Just Published - webstore.iec.ch/justpublished monde, avec plus de 22 500 articles terminologiques en
Restez informé sur les nouvelles publications IEC. Just anglais et en français, ainsi que les termes équivalents
Published détaille les nouvelles publications parues. dans 25 langues additionnelles. Egalement appelé
Disponible en ligne et une fois par mois par email. Vocabulaire Electrotechnique International (IEV) en ligne.

Service Clients - webstore.iec.ch/csc
Si vous désirez nous donner des commentaires sur cette
publication ou si vous avez des questions contactez-
nous: sales@iec.ch.
CONTENTS
FOREWORD . 3
1 Scope . 5
2 Normative references . 5
3 Terms, definitions and abbreviated terms . 6
3.1 Terms and definitions . 6
3.2 Abbreviated terms. 7
4 Schematic drawing of PVDDA controller applications . 7
5 General requirements for PVDDA controller . 11
5.1 Operation conditions . 11
5.2 Controller ratings and markings . 11
5.2.1 Converter ratings and markings . 11
5.2.2 Controller input ratings . 11
5.2.3 Controller output ratings . 11
5.3 Control strategies . 11
5.3.1 General. 11
5.3.2 Optional strategies . 11
6 Performance requirements and test . 12
6.1 Test sequences . 12
6.2 Test configuration . 12
6.3 Test conditions and general evaluations . 13
6.3.1 Test conditions . 13
6.3.2 Visual inspection . 13
6.3.3 Insulation test . 13
6.4 Functionality test . 13
6.4.1 Purpose . 13
6.4.2 PS→A operation mode . 13
6.4.3 PG→A operation mode . 14
6.4.4 GS→A working mode . 14
6.4.5 PG→SA operation mode (optional) . 14
6.5 Dynamic switchover operation test . 16
6.5.1 Transition time from on-grid state to off-grid state . 16
6.5.2 Switching time between charging and discharging of energy storage . 18
6.5.3 Transient voltage of regulated DC appliance connection and transition
time . 20
6.5.4 Transient voltage of unregulated DC appliance connection and
transition time . 23
6.5.5 Grid power curtailment and load management . 26
7 Environmental testing. 28
7.1 Humidity freeze test . 28
7.2 Thermal cycling test . 28
7.3 Damp heat test . 28
7.4 Dry heat test . 28
7.5 Shipping vibration test . 28
8 High and low temperature operation test . 28
8.1 High temperature operation test . 28
8.1.1 Purpose . 28
8.1.2 Requirements . 28
8.1.3 Test procedure . 28
8.2 Low temperature start-up . 29
8.2.1 Purpose . 29
8.2.2 Requirements . 29
8.2.3 Test procedure . 29
9 Report . 29
Annex A (normative) Summary of test results . 30
Bibliography . 31

Figure 1 – Schematic drawing of PVDDA controller (including all options) . 7
Figure 2 – PVDDA controller used in equipment configuration PA . 8
Figure 3 – PVDDA controller used in equipment configuration PAG . 8
Figure 4 – PVDDA controller used in equipment configuration PAS . 9
Figure 5 – PVDDA controller used in equipment configuration PAGS . 9
Figure 6 – Test configuration of PVDDA controller . 12
Figure 7 – Transition time from on-grid state to off-grid state . 16
Figure 8 – Transition time of t - t curve . 20
1 0
Figure 9 – Transition time of t - t curve . 20
3 2
Figure 10 – Transition time of t - t curve . 23
5 4
Figure 11 – Transition time of t - t curve . 23
7 6
Table 1 – Requirement clauses for typical equipment configuration . 10
Table 2 – Operation test of typical operation modes . 15
Table 3 – Transition time from on-grid state to off-grid state test . 17
Table 4 – Switching time between charging and discharging test . 19
Table 5 – Regulated DC appliance switchover test . 22
Table 6 – Comparison between regulated DC appliance connection and unregulated
DC appliance connection . 24
Table 7 – Unregulated DC appliance switchover test . 25
Table 8 – Grid power curtailment and load management . 27
Table A.1 – Summary of test. 30

INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________
Photovoltaic direct-driven appliance controllers -
Part 1: General requirements
FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international
co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and
in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports,
Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their
preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with
may participate in this preparatory work. International, governmental and non-governmental organizations liaising
with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for
Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence between
any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a)
patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in
respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which
may be required to implement this document. However, implementers are cautioned that this may not represent
the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC
shall not be held responsible for identifying any or all such patent rights.
IEC 63349-1 has been prepared by IEC technical committee 82: Solar photovoltaic energy
systems. It is an International standard.
The text of this International Standard is based on the following documents:
Draft Report on voting
82/2501/FDIS 82/2533/RVD
Full information on the voting for its approval can be found in the report on voting indicated in
the above table.
The language used for the development of this International Standard is English.
This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in
accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available
at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are
described in greater detail at www.iec.ch/publications.
A list of all parts in the IEC 63349 series, published under the general title Photovoltaic direct-
driven appliance controllers, can be found on the IEC website.
The committee has decided that the contents of this document will remain unchanged until the
stability date indicated on the IEC website under webstore.iec.ch in the data related to the
specific document. At this date, the document will be
– reconfirmed,
– withdrawn, or
– revised.
1 Scope
This part of IEC 63349 establishes control functions and operational performance requirements
for photovoltaic direct-driven appliance (PVDDA) controllers.
PVDDA controllers are devices used for controlling power among power sources (such as a PV
array, grid, energy storage, etc.) and appliances (such as an air-conditioner, refrigerator, water
pump, etc.). Through a PVDDA controller, the power generated by a PV array is directly
supplied to appliances. The PVDDA controller also controls the appliances and has internal
communication. The PVDDA controller can have external communication with connected power
sources and appliances, but communication protocols are not covered in this document.
A PVDDA controller is built in or integrated with a control center, a maximum power point
tracking (MPPT) system, and one or multiple converters connected to appliances. The controller
can also include a bi-directional grid-connected AC/DC power converter, an energy storage
charger/discharger, etc. However, many of these devices have their own applicable standards,
therefore this document does not intend to create any new requirements for these individual
devices.
The requirements for PVDDA controllers are applicable to systems with voltages not higher
than 1 500V DC or 1 000V AC. Safety and EMC requirements for the PVDDA controllers are
under consideration and not covered by this document. Safety requirements for power
converters connected to a PVDDA controller are listed as follows:
a) for converter connected to PV array, IEC 62109-1 and IEC 62109-2 are applicable;
b) for bi-directional converter connected to grid, IEC 62909-1 and IEC 62909-2 are applicable;
c) for converter connected to energy storage, IEC 62477-1 and IEC 62509 are applicable;
d) for variable frequency drive, IEC 61800-5-1 is applicable.
Performance requirements for each individual power converter connected to a PVDDA
controller refer to IEC 62093.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies.
For undated references, the latest edition of the referenced document (including any
amendments) applies.
IEC TS 61836, Solar photovoltaic energy systems - Terms, definitions and symbols
IEC 62093:2022, Photovoltaic system power conversion equipment - Design qualification and
type approval
IEC TS 62786-1, Distributed energy resources connection with the grid - Part 1: General
requirements
IEC TS 62786-3, Distributed energy resources connection with the grid - Part 3: Additional
requirements for stationary battery energy storage system
IEC TS 63106-1, Simulators used for testing of photovoltaic power conversion equipment -
Recommendations - Part 1: AC power simulators
IEC TS 63106-2, Simulators used for testing of photovoltaic power conversion equipment -
Recommendations - Part 2: DC power simulators
3 Terms, definitions and abbreviated terms
3.1 Terms and definitions
For the purposes of this document, the terms and definitions given in IEC TS 61836 and the
following apply.
ISO and IEC maintain terminology databases for use in standardization at the following
addresses:
– IEC Electropedia: available at https://www.electropedia.org/
– ISO Online browsing platform: available at https://www.iso.org/obp
3.1.1
PV direct-driven appliance
PVDDA
appliance which directly uses electrical power generated by a PV array, and which can be
connected to the electrical grid, energy storage devices, or other power sources
3.1.2
PV direct-driven appliance controller
PVDDA controller
device of PVDDA used for power control among power sources and appliances, which is sold
as a single product
3.1.3
variable frequency drive
VFD
product or component that controls the rotational speed of a motor, typically an induction motor,
through a proportional relationship between drive output voltage and commanded output
frequency
[SOURCE: IEC 61800-7-202:2015, 3.1.52, modified – The notes have been removed.]
3.1.4
curtailment
reduction of the active power output of renewable energy generating units or power plants below
the maximum which could be fed into an electric power network in the prevailing conditions
[SOURCE: IEC 62934:2021, 3.7.5]
3.1.5
load management
reduction or disconnection of power usage from the grid, either automatically or manually
(usually as requested by the electric power network operator)
3.2 Abbreviated terms
GS→A grid and energy storage are supplying power to appliances
PA PV array (or PV module) and appliance
PAG PV array (or PV module), appliance and grid
PAGS PV array (or PV module), appliance, grid and energy storage
PAS PV array (or PV module), appliance and energy storage
PG→A PV array (or PV module) and grid are supplying power to appliances
PG→SA PV array (or PV module) and grid are supplying power to energy storage and
appliance
PS→A PV array (or PV module) and energy storage are supplying power to appliance
PVDDA PV direct-driven appliance
VFD variable frequency drive
4 Schematic drawing of PVDDA controller applications
The PVDDA controller is used in a system where the main power source is a PV array and the
load is appliances. It may be configured with connections for grid, energy storage, DC sources,
and other sources. The controller shall have a control port for connecting to external control
sources. The schematic drawing is shown in Figure 1.

NOTE Regulated DC appliance refers to an appliance which is connected to a DC-DC converter and is usually
sensitive to the voltage deviation; unregulated DC appliance refers to an appliance which is directly connected to the
DC bus and is insensitive to voltage deviation.
Figure 1 – Schematic drawing of PVDDA controller (including all options)
PVDDA controllers can be used in different equipment configurations. Typical configurations
are classified as follows (see definitions in IEC TS 63349-2):
Equipment configuration PA: equipment configuration includes PV array and appliances, see
Figure 2.
Figure 2 – PVDDA controller used in equipment configuration PA
Equipment configuration PAG: equipment configuration includes PV array, grid and appliances,
see Figure 3.
Figure 3 – PVDDA controller used in equipment configuration PAG
Equipment configuration PAS: equipment configuration includes PV array, energy storage and
appliances, see Figure 4.
Figure 4 – PVDDA controller used in equipment configuration PAS
Equipment configuration PAGS: equipment configuration includes PV array, grid, energy
storage and appliances, see Figure 5.

Figure 5 – PVDDA controller used in equipment configuration PAGS
Power converters connected to the PVDDA converter shall be controlled to cooperate to keep
the system working in a stable and reliable state. Controllers used in each equipment
configuration shall comply with the following requirements specified in Table 1.
Table 1 – Requirement clauses for typical equipment configuration
Equipment configuration PA (Figure 2) PAG (Figure 3) PAS (Figure 4) PAGS (Figure 5)
5.1 Operation conditions √ √ √ √
(5.2 Controller ratings and markings) √ √ √
5.2.1 Converter ratings and
markings
5.2.2 Controller input ratings √ √ √ √
5.2.3 Controller output ratings √ √ √ √
5.3 Control strategies √ √ √ √
(6.3 Test conditions and general √ √ √ √
evaluation)
6.3.2 Visual inspection
6.3.3 Insulation test √ √ √ √
(6.4 Functionality test)  √ √
6.4.2 PS→A operation mode
6.4.3 PG→A operation mode √ √
6.4.4 GS→A operation mode  √
6.4.5 PG→SA operation mode  √
(optional)
(6.5 Dynamic switchover operation √ √
test)
6.5.1 Transition time from on-grid
state to off-grid state
6.5.2 Switching time between √ √
charging and discharging of energy
storage
6.5.3 Transient voltage of regulated √ √ √
DC appliance connection and
(applied when (applied when (applied when
transition time
configured with configured with configured with
regulated DC regulated DC regulated DC
appliance) appliance) appliance)
6.5.4 Transient voltage of √ √ √
unregulated DC appliance and
(applied when (applied when (applied when
transition time
configured with configured with configured with
unregulated DC unregulated DC unregulated DC
appliance) appliance) appliance)
6.5.5 Grid power curtailment and √ √ √ √
load management
(7 Storage environmental testing) √ √ √ √
7.1 Humidity freeze test
7.2 Thermal cycling test √ √ √ √
7.3 Damp heat test √ √ √ √
7.4 Dry heat test √ √ √ √
7.5 Shipping vibration test √ √ √ √
(8 High and low temperature √ √ √ √
operation test)
8.1 High temperature operation test
8.2 Low temperature start-up √ √ √ √

5 General requirements for PVDDA controller
5.1 Operation conditions
As a minimum, the controller shall work in the following ambient environmental conditions:
a) For controller installed in outdoor environment: temperature from -20 °C to 50 °C, for
controller installed in indoor environment: temperature from 0 °C to 40 °C;
b) relative humidity between 0 % to 95 %, no condensation;
c) altitude above sea level: not more than 2 000 m.
Manufacturers can specify their own conditions beyond the above ranges.
5.2 Controller ratings and markings
5.2.1 Converter ratings and markings
The individual converter that is not built in but integrated into the PVDDA controller shall
conform to its applicable standard. The converter shall be marked with the ratings of each port.
The ratings shall be plainly and permanently marked on the converter, in a location that is
clearly visible after installation.
5.2.2 Controller input ratings
All input ports shall be marked with their specifications: voltage, current, frequency including
tolerances and range.
5.2.3 Controller output ratings
All output ports shall be marked with their specifications: voltage, current, frequency including
tolerances and range.
5.3 Control strategies
5.3.1 General
The PVDDA controller shall be able to conduct the optional strategies listed in 5.3.2 to set
operational priorities on the basis of compliance with IEC TS 62786-1 and IEC TS 62786-3 or
local grid codes. The manufacturers of PVDDA controllers shall declare which grid codes the
controller complies with.
5.3.2 Optional strategies
a) Grid power curtailment: The key point of this control strategy is to respond to a grid request
to limit power supplied to the grid.
b) Load management: The key point of this control strategy is to respond to a grid request to
limit power consumption from the grid.
c) Appliance performance priority: The key point of this control strategy is to guarantee the
appliance operates as desired. (e.g. air conditioning has the lowest temperature fluctuation
from the set point for the best comfortable level).
d) System economy priority: The key point of this control strategy is to have the lowest system
operation cost. The electricity price for supply to or consume from the grid can be different
according to the time of the day, active or reactive power, etc. This control strategy may
sacrifice comfortable level from the appliances (e.g. air conditioning has a higher
temperature fluctuation from the set point).
6 Performance requirements and test
6.1 Test sequences
All the tests from 6.3 to Clause 8 can be conducted on either one sample or on multiple samples
(to reduce the whole test program duration). Tests from 6.3 to Clause 8 are not required to be
done in any particular sequence.
6.2 Test configuration
The test configuration of PVDDA controller is shown in Figure 6.

Figure 6 – Test configuration of PVDDA controller
For the grid simulator, the requirements of IEC TS 63106-1 apply. For the PV array and energy
storage simulators, the requirements of IEC TS 63106-2 apply. Appliance test equipment shall
be actual appliances intended for use with the PVDDA controller.
Switches D1 to D9 are for test purpose only, and not necessarily required as part of the device
products.
6.3 Test conditions and general evaluations
6.3.1 Test conditions
The following ambient environmental conditions shall exist in the test location:
a) temperature of 15 °C to 40 °C;
b) relative humidity of not more than 75 % and not less than 5 %;
c) air pressure of 75 kPa to 106 kPa;
d) no frost, dew, condensing water, rain, solar radiation, etc.
6.3.2 Visual inspection
Before and after each environmental test (Clause 7 and Clause 8), a visual check shall be done
to see if there are any cracks, broken panels, burn marks, or deformation on any part of the
controller.
6.3.3 Insulation test
Before and after each environmental test (Clause 7 and Clause 8), conduct the insulation test
to check if there is any damage to the insulation. The insulation voltage is applied between
each input/output port and the PVDDA controller earthing point. If there are no accessible
conductive parts and no dedicated earthing point, the test shall be conducted between each
port and a metal foil wrapped around the controller. Test voltage shall be determined using the
formula:
U = 2 × U + 1 000 V
(1)
t r
where
U is the test voltage, in volts (V);
t
is the rated voltage, in volts (V). It can be different for each input/output port. If there is no
U
r
galvanic isolation between the ports, the highest rated voltage of the ports shall be used. If
the converters comply with the relevant standards, this test does not have to be done on
them.
6.4 Functionality test
6.4.1 Purpose
This test is to verify the PVDDA controller can control the system to work normally under typical
operation modes specified in IEC TS 63349-2.
6.4.2 PS→A operation mode
6.4.2.1 Requirements
Appliances A6 (variable frequency appliance), A8 (regulated DC appliance) and A9
(unregulated appliance) shall be able to work at rated power.
6.4.2.2 Test procedure
The test procedures shall be conducted in accordance with Table 2.
Test step 2-1: Verify that appliances A6, A8 and A9 can work at rated power when S2 (grid
simulator) is disconnected, but S1 (PV array simulator) and S3 (energy storage simulator) are
connected.
6.4.3 PG→A operation mode
6.4.3.1 Requirements
Appliances A6, A8 and A9 shall be able to work at rated power.
6.4.3.2 Test procedure
The test procedures shall be conducted in accordance with Table 2.
Test step 2-2: Verify that appliances A6, A8 and A9 can work at rated power when S3 (energy
storage simulator) is disconnected, but S1 (PV array simulator) and S2 (grid simulator) are
connected.
6.4.4 GS→A working mode
6.4.4.1 Requirements
Appliances A6, A8 and A9 shall be able to work at rated power.
6.4.4.2 Test procedure
The test procedures shall be conducted in accordance with Table 2.
Test step 2-3: Verify that appliances A6, A8 and A9 can work at rated power when S1 (PV array
simulator) is disconnected, but S2 (grid simulator) and S3 (energy storage simulator) are
connected.
6.4.5 PG→SA operation mode (optional)
6.4.5.1 Requirements
Appliances A6, A8 and A9 shall be able to work at rated power, and the energy storage shall
be charged at rated power.
6.4.5.2 Test procedure
The test procedures shall be conducted in accordance with Table 2.
Test step 2-4: Verify that appliances A6, A8, A9 and S3 (energy storage simulator) can work at
rated power when S1 (PV array simulator) and S2 (grid simulator) are connected.

Table 2 – Operation test of typical operation modes
Set point Power
Test Connected Measured
a
step switch parameter
S1 S2 S3 A6 A8 A9 Target Measured
b c
2-1 D , D 100 % rated 100 % rated 100 % rated 100 % rated Power of A6, 95 % to 105 %
- Follow
1 3
power power power power A8 and A9 of rated power
2-2 D , D 100 % rated Follow - 100 % rated 100 % rated 100 % rated Power of A6, 95 % to 105 %
1 2
power power power power A8 and A9 of rated power
2-3 D , D - Follow 100 % rated 100 % rated 100 % rated 100 % rated Power of A6, 95 % to 105 %
2 3
power power power power A8 and A9 of rated power
2-4 D , D , D 100 %rated Follow -100 % rated 100 % rated 100 % rated 100 % rated Power of A6, 95 % to 105 %
1 2 3
power power power power power A8, A9 and of rated power
energy
storage
a
All switches not listed are disconnected.
b
"-" means not applicable.
c
"Follow" means the power has no set point value, but let it run based on other settings.

6.5 Dynamic switchover operation test
6.5.1 Transition time from on-grid state to off-grid state
6.5.1.1 Requirements
The transition time from on-grid state to off-grid state could be at different intervals specified
by the manufacturer. It shall be 3 s to 10 s. If the controller has a function of controlling
uninterruptible operation, the transition time from on-grid state to off-grid state shall be no
longer than 8 ms at 60 Hz and 10 ms at 50 Hz. Local requirements can apply. The transition
time is shown in Figure 7 as t - t .
b a
Figure 7 – Transition time from on-grid state to off-grid state
6.5.1.2 Test procedure
The test procedures shall be conducted in accordance with Table 3.
Test step 3-1: Adjust the controller to let S2 (grid simulator) supply appliance A6 (variable
frequency appliance) with 100 % rated power of appliance A6.
Test step 3-2: Disconnect S2 from the controller and monitor the power of port T6 until it
recovers to 100 % rated power of appliance A6. Verify that for ordinary controller, transition
time is within 3 s to 10 s; for controller having a function of controlling uninterruptible operation,
transition time is less than 10 ms at 50 Hz or less than 8 ms at 60 Hz.

Table 3 – Transition time from on-grid state to off-grid state test
Set point Transition time
Test Connected
Measured parameter
a
step switch
S1 S2 S3 A6 A8 A9 Target Measured
100 % rated
b c
D , D , D
3-1 - - - - -
- Follow
2 3 6
(connected but no
power
power exchange)
Ordinary controller:
Power of T6; t and t
t - t within 3 s to
a b
b a
10 s;
(Record the time when
the controller
Uninterruptible
100 % rated
disconnects from the S2
D , D operation controller:
3-2 - 0 Follow - -
3 6
power
as t ; record the time
a
- t < 10 ms at
T
b a
when power of T6
50 Hz or
recovers to 100 % rated
power of A6 as t )
b
t - t < 8 ms at
b a
60 Hz.
a
All switches not listed are disconnected.
b
"-" means not applicable.
c
"Follow" means the power has no set point value, but let it run based on other settings.

6.5.2 Switching time between charging and discharging of energy storage
6.5.2.1 Requirements
For a battery energy storage system, the switching time of the energy storage system from 90 %
of rated power charging state to 90 % of rated power discharging state or the opposite shall not
exceed 100 ms. The local code can have special requirements. For other storage technologies,
the above requirements can be superseded in accordance with the technical performance at
the specific technology.
6.5.2.2 Test procedure
The test procedures shall be conducted in case of battery energy storage system in accordance
with Table 4.
Test step 4-1a: Adjust S3 (battery energy storage) to 90 % of rated power charging state
charged by S2 (grid simulator).
Test step 4-1b: Verify that switching time of energy storage converter from 90 % of rated power
charging state to 90 % of rated power discharging state does not exceed 100 ms.
Test step 4-2a: Adjust S3 to 90 % of rated power discharging state.
Test step 4-2b: Verify that switching time of energy storage converter from 90 % of rated power
discharging state to 90 % of rated power charging state does not exceed 100 ms.

Table 4 – Switching time between charging and discharging test
Set point
Connected
Test Step Measured parameter Target Measured
a
switch
S1 S2 S3 A6 A8 A9
90 % of rated
b c
D , D
4-1a power charging - - -
- Follow
2 3
state
t and t
c d
(Record the time when S3 is
ordered to begin to discharge
90 % of rated
D , D from charging state as t ; T - t < 100 ms
4-1b
Follow power discharging - - -
2 3 c d c
state
Record the time when S3
comes to 90 % rated power
discharging state as t )
d
90 % of rated
D , D
4-2a - Follow power discharging - - -
2 3
state
t and t
e f
(Record the time when S3 is
ordered to begin to charge from
90 % of rated
discharging state as t ;
e
D , D , D , D t - t < 100 ms
4-2b - Follow power charging - - -
3 6 8 9 f e
state
Record the time when the
power of S3 comes to 90 %
rated power discharging state
as t )
f
a
All switches not listed are disconnected.
b
"-" means not applicable.
c
"Follow" means the power has no set point value, but let it run based on other settings.

6.5.3 Transient voltage of regulated DC appliance connection and transition time
6.5.3.1 Purpose
This test is for port T8. It is only applicable to regulated DC outputs.
6.5.3.2 Requirements
The voltage range at port T8 shall be 80 % to 105 % of the nominal voltage of port T8 when
appliance A8 (regulated DC appliance) is in normal operation. When appliance A8 is
disconnected from or connected to its port, the voltage at port T8 during transition shall be 70 %
to 115 % of the nominal voltage. The transition time shall not exceed 40 ms. The transition time
of t - t (test 5-1) shall comply with Figure 8, and transition time of t - t (test 5-2) shall comply
1 0 3 2
with Figure 9.
NOTE Here transition time means a time period from the point when the voltage of the appliance is going beyond
the normal operation voltage range until the point when the voltage returns back within the range; after this returning
point, the voltage is no longer outside the voltage range unless there is a new switchover.

Figure 8 – Transition time of t - t curve
1 0
Figure 9 – Transition time of t - t curve
3 2
6.5.3.3 Test procedure
The test procedures shall be conducted in accordance with Table 5.
Test step 5-1: Verify that the voltage of appliance A8 (regulated DC appliance) during the
transition is 70 % to 115 % of rated voltage of appliance A8. And verify that the transition time
t - t from the moment appliance A8 disconnects from the controller until the voltage of port T8
1 0
recovers within 80 % to 105 % of the nominal voltage range is ≤ 40 ms;
Test step 5-2: Verify that the voltage of appliance A8 during the transition time is within 70 %
to 115 % of rated voltage. And verify that the transition time t - t from the moment appliance
3 2
A8 connects to the controller until the voltage of appliance A8 recovers within 80 % to 105 %
of the nominal of the nominal voltage range is ≤ 40 ms.

Table 5 – Regulated DC appliance switchover test
Test Connected Set point Measured parameter Target Measured
a
step
switch
S1 S2 S3 A6 A8 A9
Voltage of T8; t and t
0 1
(Record the time when
Voltage of T8
A8 disconnects from the
From disconnecting state
during transition:
controller as t
100 % rated until the voltage recovers
70 % to 115 % of
b c
D , D
5-1 - -
Follow -
1 2
power to 80 % to 105 % of nominal voltage;
Record the time when
nominal voltage
t - t ≤ 40 ms
the voltage of T8
1 0
recovers within 80 % to
105 % nominal as t
1)
Voltage of T8; t and t
2 3
(Record the time when
A8 connects to the Voltage of T8
From connecting state controller as t ; during transition:
100 % rated until the voltage recovers 70 % to 115 % of
D , D , D
5-2 Follow - - -
1 2 8
power to 80 % to 105 % of Record the time when nominal voltage;
nominal voltage the voltage of L8
t - t ≤ 40 ms
recovers
3 2
within 80 % to 105 %
)
nominal as t
a
All switches not listed are disconnected.
b
"Follow" means the power has no set point value, but let it run based on other settings.
c
"-" means not applicable.
6.5.4 Transient voltage of unregulated DC appliance connection and transition time
6.5.4.1 Purpose
This test is only applicable for a DC bus wi
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.