Non-destructive testing - Radiographic inspection of corrosion and deposits in pipes by X- and gamma rays - Part 2: Double wall radiographic inspection

This European Standard specifies fundamental techniques of film and digital radiography with the object of enabling satisfactory and repeatable results to be obtained economically. The techniques are based on generally recognized practice and fundamental theory of the subject.
This European Standard applies to the radiographic examination of pipes in metallic materials for service induced flaws such as corrosion pitting, generalized corrosion and erosion. Besides its conventional meaning, "pipe" as used in this standard should be understood to cover other cylindrical bodies such as tubes, penstocks, boiler drums and pressure vessels.
Weld inspection for typical welding process induced flaws is not covered, but weld inspection is included for corrosion/erosion type flaws.
The pipes may be insulated or not, and can be assessed where loss of material due, for example, to corrosion or erosion is suspected either internally or externally.
This part of EN 16407 covers double wall inspection techniques for detection of wall loss, including double wall single image (DWSI) and double wall double image (DWDI).
Note that the DWDI technique described in this part of EN 16407 is often combined with the tangential technique covered in EN 16407-1.
This European Standard applies to in-service double wall radiographic inspection using industrial radiographic film techniques, computed digital radiography (CR) and digital detector arrays (DDA).

Zerstörungsfreie Prüfung - Durchstrahlungsprüfung auf Korrosion und Ablagerungen in Rohren mit Röntgen- und Gammastrahlen - Teil 2: Doppelwand Durchstrahlungsprüfung

Diese Europäische Norm legt die grundlegenden Techniken für die Durchstrahlungsprüfung unter Anwendung von Filmen und digitalen Techniken mit dem Ziel festgelegt, auf wirtschaftliche Art und Weise zuverlässige und wiederholbare Ergebnisse zu erreichen. Die Techniken basieren sowohl auf den allgemein anerkannten praktischen Verfahren als auch auf den theoretischen Grundlagen dieses Fachbereichs.
Diese Europäische Norm gilt für die Durchstrahlungsprüfung von Rohren aus metallischen Werkstoffen zum Nachweis von Werkstofffehlern, die beim Gebrauch auftreten, z. B. Korrosionsmulden oder Fehler durch allgemeine Korrosion und Erosion. Neben der konventionellen Bedeutung sollten in dieser Norm unter der Benennung „Rohr“ (engl. pipe) auch andere zylindrische Gegenstände, z. B. Röhren/Schläuche, Druckrohrleitungen, Kesseltrommeln und Druckbehälter verstanden werden.
In dieser Norm nicht behandelt wird die Überprüfung von Schweißnähten auf die Fehler, die durch die herkömmlichen Schweißverfahren eingebracht werden; behandelt wird dagegen die Prüfung von Schweiß-verbindungen zum Nachweis von Fehlern durch Korrosion/Erosion.
Die Prüfung kann an Rohren mit oder ohne Dämmung durchgeführt werden, beispielsweise in den Fällen, in denen vermutet wird, dass durch Korrosion oder Erosion ein Materialverlust an der Innen  oder Mantelfläche des Rohrs entstanden ist.
Dieser Teil von EN 16407 behandelt Doppelwand Durchstrahlungstechniken zum Nachweis einer Verringerung der Dicke der Rohrwand unter Einbeziehung von Doppelwand Einzelbild  (DWSI) und Doppel-wand Doppelbild Techniken (DWDI).
Es ist zu beachten, dass die in diesem Teil beschriebene Doppelwand-Doppelbild Technik (DWDI) häufig mit der tangentialen Durchstrahlung kombiniert wird, die in Teil 1 dieser Norm behandelt wird.
Diese Norm gilt für die Doppelwand Durchstrahlungsprüfung unter Anwendung der industriellen Röntgenfilm-techniken, der computerunterstützten digitalen Radiographie (CR) und der digitalen Matrixdetektoren (DDA).

Essais non destructifs - Examen radiographique de la corrosion et des dépôts dans les canalisations, par rayons X et rayons gamma - Partie 2: Examen radiographique double paroi

La présente Norme européenne spécifie les techniques fondamentales de radiographie sur film et de radiographie numérique permettant d'obtenir des résultats satisfaisants et reproductibles de manière économique. Les techniques reposent sur une pratique généralement reconnue et sur la théorie fondamentale en la matière.
La présente Norme européenne s'applique à l'examen radiographique des canalisations en matériaux métalliques afin de détecter des défauts induits par le service tels que piqûres de corrosion, corrosion généralisée et érosion. Outre sa signification conventionnelle, il convient de comprendre que le terme « canalisation », tel qu'il est utilisé dans la présente norme, couvre d'autres corps cylindriques tels que les tubes, les conduites forcées, les corps de chaudière et les récipients sous pression.
Le contrôle des soudures pour détecter les défauts types induits par le procédé de soudage n'est pas traité, mais un contrôle des soudures est inclus pour rechercher les défauts de type corrosion/érosion.
Les canalisations peuvent être isolées ou non et peuvent être évaluées lorsqu'une perte de matériau due, par exemple, à la corrosion ou à l'érosion, interne ou externe, est suspectée.
La présente partie de l'EN 16407 traite des techniques d'examen des doubles parois permettant la détection d'une perte de paroi, comprenant la technique double paroi simple image (DWSI) et la technique double paroi double image (DWDI).
Noter que la technique DWDI décrite dans la présente partie de l’EN 16407 est souvent combinée à la technique tangentielle traitée dans l’EN 16407-1.
La présente Norme européenne s'applique à l'examen radiographique des doubles parois en service en utilisant des techniques industrielles sur film radiographique, la radiographie numérisée (CR) et des mosaïques de détecteurs numériques (DDA).

Neporušitvene preiskave - Radiografski pregled korozije in nanosov v ceveh z rentgenskimi in gama žarki - 2. del: Radiografski pregled preko dveh sten

Standard EN 16407-2 določa temeljne tehnike filmske in digitalne radiografije z namenom omogočanja zadovoljivih in ponovljivih rezultatov, ki so stroškovno ugodni. Tehnike so osnovane na splošno priznani praksi in temeljnem poznavanju subjekta. Ta evropski standard velja za radiografski pregled cevi in kovinskih materialov za poškodbe, ki so posledica uporabe, kot na primer jamičasta korozija, splošna korozija in erozija. Poleg svojega klasičnega pomena izraz »cev«, kot je uporabljen v tem standardu, zajema tudi druga cilindrična telesa, kot so dovodni kanali, bobni kotlov in tlačne posode. Standard ne zajema pregleda zvarov za običajne napake, ki so posledica varilnega postopka, vključuje pa pregled zvarov za napake, ki so posledica korozije/erozije. Cevi so lahko izolirane ali ne in se jih lahko pregleda, če se sumi na notranjo ali zunanjo poškodbo materiala, ki je posledica korozije ali erozije. Ta del standarda EN 16407 zajema tehnike pregleda prek dveh sten za ugotavljanje poškodb na steni, vključno z enoslikovno tehniko prek dveh sten (DWSI) in dvoslikovno tehniko prek dveh sten (DWDI). Tehnika DWDI, opisana v tem delu standarda EN 16407 se pogosto uporablja skupaj s tangencialno tehniko, ki jo zajema standard EN 16407-1. Ta evropski standard velja za radiografski pregled prek dveh sten med obratovanjem, ki uporablja tehnike industrijskega radiografskega filma, računalniško digitalno radiografijo (CR) ali radiografijo z digitalnimi detektorskimi nizi (DDA).

General Information

Status
Withdrawn
Publication Date
14-Jan-2014
Withdrawal Date
20-Jan-2026
Current Stage
9960 - Withdrawal effective - Withdrawal
Start Date
31-Oct-2018
Completion Date
28-Jan-2026

Relations

Effective Date
30-Sep-2016
Effective Date
28-Jan-2026
Effective Date
28-Jan-2026
Effective Date
28-Jan-2026
Effective Date
28-Jan-2026
Effective Date
28-Jan-2026
Effective Date
28-Jan-2026
Standard

EN 16407-2:2014 - BARVE

English language
36 pages
Preview
Preview
e-Library read for
1 day

Frequently Asked Questions

EN 16407-2:2014 is a standard published by the European Committee for Standardization (CEN). Its full title is "Non-destructive testing - Radiographic inspection of corrosion and deposits in pipes by X- and gamma rays - Part 2: Double wall radiographic inspection". This standard covers: This European Standard specifies fundamental techniques of film and digital radiography with the object of enabling satisfactory and repeatable results to be obtained economically. The techniques are based on generally recognized practice and fundamental theory of the subject. This European Standard applies to the radiographic examination of pipes in metallic materials for service induced flaws such as corrosion pitting, generalized corrosion and erosion. Besides its conventional meaning, "pipe" as used in this standard should be understood to cover other cylindrical bodies such as tubes, penstocks, boiler drums and pressure vessels. Weld inspection for typical welding process induced flaws is not covered, but weld inspection is included for corrosion/erosion type flaws. The pipes may be insulated or not, and can be assessed where loss of material due, for example, to corrosion or erosion is suspected either internally or externally. This part of EN 16407 covers double wall inspection techniques for detection of wall loss, including double wall single image (DWSI) and double wall double image (DWDI). Note that the DWDI technique described in this part of EN 16407 is often combined with the tangential technique covered in EN 16407-1. This European Standard applies to in-service double wall radiographic inspection using industrial radiographic film techniques, computed digital radiography (CR) and digital detector arrays (DDA).

This European Standard specifies fundamental techniques of film and digital radiography with the object of enabling satisfactory and repeatable results to be obtained economically. The techniques are based on generally recognized practice and fundamental theory of the subject. This European Standard applies to the radiographic examination of pipes in metallic materials for service induced flaws such as corrosion pitting, generalized corrosion and erosion. Besides its conventional meaning, "pipe" as used in this standard should be understood to cover other cylindrical bodies such as tubes, penstocks, boiler drums and pressure vessels. Weld inspection for typical welding process induced flaws is not covered, but weld inspection is included for corrosion/erosion type flaws. The pipes may be insulated or not, and can be assessed where loss of material due, for example, to corrosion or erosion is suspected either internally or externally. This part of EN 16407 covers double wall inspection techniques for detection of wall loss, including double wall single image (DWSI) and double wall double image (DWDI). Note that the DWDI technique described in this part of EN 16407 is often combined with the tangential technique covered in EN 16407-1. This European Standard applies to in-service double wall radiographic inspection using industrial radiographic film techniques, computed digital radiography (CR) and digital detector arrays (DDA).

EN 16407-2:2014 is classified under the following ICS (International Classification for Standards) categories: 19.100 - Non-destructive testing; 23.040.01 - Pipeline components and pipelines in general. The ICS classification helps identify the subject area and facilitates finding related standards.

EN 16407-2:2014 has the following relationships with other standards: It is inter standard links to EN ISO 20769-2:2018, EN ISO 11699-2:2018, EN ISO 11699-1:2011, EN 14784-1:2005, EN ISO 19232-1:2013, EN ISO 19232-5:2018, EN ISO 17636-2:2013. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.

EN 16407-2:2014 is available in PDF format for immediate download after purchase. The document can be added to your cart and obtained through the secure checkout process. Digital delivery ensures instant access to the complete standard document.

Standards Content (Sample)


2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.Neporušitvene preiskave - Radiografski pregled korozije in nanosov v ceveh z rentgenskimi in gama žarki - 2. del: Radiografski pregled preko dveh stenZerstörungsfreie Prüfung - Durchstrahlungsprüfung auf Korrosion und Ablagerungen in Rohren mit Röntgen- und Gammastrahlen - Teil 2: Doppelwand DurchstrahlungsprüfungEssais non destructifs - Examen radiographique de la corrosion et des dépôts dans les canalisations, par rayons X et rayons gamma - Partie 2 : Examen radiographique double paroiNon-destructive testing - Radiographic inspection of corrosion and deposits in pipes by X- and gamma rays - Part 2: Double Wall radiographic inspection23.040.01Deli cevovodov in cevovodi na splošnoPipeline components and pipelines in general19.100Neporušitveno preskušanjeNon-destructive testingICS:Ta slovenski standard je istoveten z:EN 16407-2:2014SIST EN 16407-2:2014en,fr,de01-julij-2014SIST EN 16407-2:2014SLOVENSKI
STANDARD
EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM
EN 16407-2
January 2014 ICS 19.100; 23.040.01 English Version
Non-destructive testing - Radiographic inspection of corrosion and deposits in pipes by X- and gamma rays - Part 2: Double wall radiographic inspection
Essais non destructifs - Examen radiographique de la corrosion et des dépôts dans les canalisations, par rayons X et rayons gamma - Partie 2: Examen radiographique double paroi
Zerstörungsfreie Prüfung - Durchstrahlungsprüfung auf Korrosion und Ablagerungen in Rohren mit Röntgen- und Gammastrahlen - Teil 2: Doppelwand Durchstrahlungsprüfung This European Standard was approved by CEN on 26 October 2013.
CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG
CEN-CENELEC Management Centre:
Avenue Marnix 17,
B-1000 Brussels © 2014 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members. Ref. No. EN 16407-2:2014 ESIST EN 16407-2:2014

Minimum image quality values . 29 Annex B (informative)
Penetrated thickness measurements from image grey levels . 31 Annex C (normative)
Determination of basic spatial resolution . 33 Bibliography . 36
a) Non insulated pipe
b) Insulated pipe Key 1 detector Figure 1 — Test arrangement for double wall single image radiography (DWSI) using a curved detector Note that the wall loss can be located on either the inner diameter, outer diameter or both surfaces of the pipe wall adjacent to the detector. Wall loss on the source side of the pipe is not imaged. For rigid planar detectors, DWSI can also be applied as shown in Figure 2a) and Figure 2 b), although with this arrangement a smaller fraction of the pipe circumference can be inspected at each position.
a) Non insulated pipe
b) insulated pipe Key 1 detector Figure 2 — Test arrangement for double wall single image radiography (DWSI) using a planar detector 6.1.3 Double wall double image (DWDI) For this arrangement, the radiation source is located in front of the pipe and with the planar film/detector at the opposite side, as shown in Figure 3a) (non insulated pipe) and Figure 3b) (insulated pipe).
a) Non insulated pipe
b) Insulated pipe Key 1 detector Figure 3 — Test arrangement for double wall double image radiography (DWDI) With DWDI, the wall loss can be located on either the inner diameter, outer diameter or both surfaces of the pipe, and on either the source or detector side of the pipe. If DWDI and tangential radiographic techniques are combined, the requirements of EN 16407-1 shall also be met. SIST EN 16407-2:2014

Se 75 a 5 ≤ wtot ≤ 55 10 ≤ wtot ≤ 40 Ir 192 10 ≤ wtot ≤ 100 20 ≤ wtot ≤ 90 Co 60 40 ≤ wtot ≤ 200 X-ray equipment with energy
from 1 MeV to 4 MeV 30 ≤ wtot ≤ 200 X-ray equipment with energy
from 4 MeV to 12 MeV wtot ≥ 50 X-ray equipment with energy
above 12 MeV wtot ≥ 80 a For aluminium and titanium the penetrated material thickness is 35 mm ≤ wtot ≤ 120 mm for class DWA and DWB testing. SIST EN 16407-2:2014

Key 1 copper/nickel and alloys 2 steel 3 titanium and alloys 4 aluminium and alloys w penetrated thickness in mm U X-ray voltage in kV Figure 4 — Maximum X-ray voltage U for X-ray devices up to 1 000 kV as a function of penetrated thickness w and material For product filled pipes, the additional radiation attenuation caused by the product shall be allowed for in the selection of sources. For a water-filled pipe, the penetrated thickness, w, for steel tested with Ir 192 shall be increased by approximately one-ninth of the path length in the water to calculate wtot. For an oil-filled pipe, the penetrated thickness, w, shall be increased by approximately one-eleventh of the path length in the oil to calculate wtot. For insulated pipes the additional radiation attenuation caused by the insulation shall be allowed for in the selection of sources. 6.3 Film systems and screens For radiographic examination, film system classes shall be used in accordance with EN ISO 11699-1. The radiographic film system class and metal screens for different radiation sources are given in Table 2. When using metal screens, good contact between films and screens is required. This may be achieved either by using vacuum-packed films or by applying pressure. SIST EN 16407-2:2014

≤ 250 kV C 5 C 4 0,02 mm to 0,15 mm front and back screens of lead X-ray potentials
> 250 kV to 500 kV C 5 C 4 0,1 mm to 0,2 mm front screens of lead b 0,02 mm to 0,2 mm back screens of lead X-ray potentials
> 500 kV to 1 000 kV C 5 C 4 0,25 mm to 0,7 mm front and back screens of steel or copper c Se 75 Ir 192 C 6 C 5 0,02 mm to 0,2 mm front and back screens of lead b Co 60 C 6 C 5 0,25 mm to 0,7 mm front and back screens of steel or copper c X-ray equipment with energy from 1 MeV to 4 MeV C 6 C 5 0,25 mm to 0,7 mm front and back screens of steel or copper c X-ray equipment with energy above 4 MeV C 6 C 5 Up to 1 mm front screen of copper, steel or tantalum d Back screen of copper or steel up to 1 mm and tantalum up to 0,5 mm d a Better film system classes may also be used. b Ready packed films with a front screen up to 0,03 mm may be used if an additional lead screen of 0,1 mm is placed between the object and the film. c In class DWA 0,5 mm to 2,0 mm screens of lead may also be used. d In class DWA lead screens 0,5 mm to 1 mm may be used by agreement between the contracting parties. SIST EN 16407-2:2014

≤ 250 kV 0 to 0,1 (lead) X-ray potentialsb > 250 kV to 1000 kV 0 to 0,3 (lead) c Ir 192, Se 75b Class DWA: 0 to 0,3 (lead) c Class DWB: 0,3 to 0,8 (steel or copper) Co 60 a 0,3 to 0,8 (steel or copper) + 0,6 to 2,0 (lead) X-ray potentials a > 1 MV 0,3 to 0,8 (steel or copper) + 0,6 to 2,0 (lead) a In the case of multiple screens (steel+lead), the steel screen shall be located between the IP and the lead screen. Instead of steel or steel and lead screens, those composed of copper, tantalum or tungsten may be used if the image quality can be proven. b Pb screens may be replaced completely or partially by Fe or Cu screens. The equivalent thickness for Fe or Cu is three times the Pb thickness. c For total penetrated thickness above 50 mm the front screen thickness should be larger than 0,1 mm Pb. Table 5 — Metal front screens for CR for the double wall radiography of aluminium and titanium Radiation source Type and thickness of metal front screens mm X-ray potentials < 150 kV ≤ 0,03 (lead)a, b X-ray potentials
≥ 150 to 500 kV ≤ 0,2 (lead)a, b Se 75 Ir 192 c ≤ 0,3 (lead)a, b a For example, instead of 0,2 mm lead, a 0,1 mm screen with an additional filter of 0,1 mm may be used outside of the cassette. b Pb screens may be replaced completely or partially by Fe or Cu screens. The equivalent thickness for Fe or Cu is three times the Pb thickness. c Ir 192 may be applied by agreement of contracting parties. 6.5 Reduction of scattered radiation 6.5.1 Filters and collimators In order to reduce the effect of back scattered radiation, direct radiation shall be collimated as much as possible to the section under examination. For computed radiography and radiography with DDAs, with Ir 192, Co 60 and other MeV radiation sources or in case of edge scatter an additional sheet of lead can be used as a filter of low energy scattered radiation SIST EN 16407-2:2014

(1) where b is the distance between the source side of the pipe and the detector in millimetres; d is the source size in millimetres. For the improved technique, DWB, the source to detector distance SDD (in millimetres) shall be, where practicable: db⋅≥SDD0,3mm (2) Formula (1) and Formula (2) give geometric unsharpness values of 0,6 mm and 0,3 mm respectively, projected onto a plane corresponding to the source side of the pipe wall nearest the detector. The corresponding unsharpness values measured at the detector are slightly larger than these values due to the effects of projective magnification. NOTE The outside diameter of the pipe often means that the achievable source to detector distances will be greater than the values given in Formula (1) and Formula (2). SIST EN 16407-2:2014

Key 1 detector Figure 5 — Axial cross section showing the maximum permissible axial length of the evaluated area for a single source position, on the film/detector, Ld, and along the pipe, Lp, on the source side of the pipe The total axial extent of the evaluated area on the detector, Ld, should be no greater than: Ld ≤ 1,32 SDD (3) SIST EN 16407-2:2014
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...